Answer:
do it if it's Sunday why are you like this
Explanation:

Engineering design is an iterative process used to identify problems and develop and improve solutions. The engineering design process can be extremely useful to any individual trying to solve a problem.
Answer:
hello your question is incomplete attached below is the complete question
<em>answer</em> :
To ( inside temperature ) = 598 K
TL ( outside temperature ) = 594 k
Explanation:
a) Determine the surface temperature To and TL based on the known conditions provided in the drawing
To ( inside temperature ) = 598 K
TL ( outside temperature ) = 594 k
attached below is the detailed solution
Difference between Datum and Datum feature is<em> 'Datum is theoretical and Datum feature is real'.
</em>
Option: (b)
<u>Explanation:</u>
A Datum is a perfect plane, line, point or surface but only occurs theoretically.
However a Datum Feature is fully based on a tangible surface, axis or point on a part where that theoretical datum is located.
The reason behind in this is they are not equal to each other because the 'part surface' is never 100% perfect.
The important functional features of the Datum is controlled during measurements.
Answer:
1) the final temperature is T2 = 876.76°C
2) the final volume is V2 = 24.14 cm³
Explanation:
We can model the gas behaviour as an ideal gas, then
P*V=n*R*T
since the gas is rapidly compressed and the thermal conductivity of a gas is low a we can assume that there is an insignificant heat transfer in that time, therefore for adiabatic conditions:
P*V^k = constant = C, k= adiabatic coefficient for air = 1.4
then the work will be
W = ∫ P dV = ∫ C*V^(-k) dV = C*[((V2^(-k+1)-V1^(-k+1)]/( -k +1) = (P2*V2 - P1*V1)/(1-k)= nR(T2-T1)/(1-k) = (P1*V1/T1)*(T2-T1)/(1-k)
W = (P1*V1/T1)*(T2-T1)/(1-k)
T2 = (1-k)W* T1/(P1*V1) +T1
replacing values (W=-450 J since it is the work done by the gas to the piston)
T2 = (1-1.4)*(-450J) *308K/(101325 Pa*650*10^-6 m³) + 308 K= 1149.76 K = 876.76°C
the final volume is
TV^(k-1)= constant
therefore
T2/T1= (V2/V1)^(1-k)
V2 = V1* (T2/T1)^(1/(1-k)) = 650 cm³ * (1149.76K/308K)^(1/(1-1.4)) = 24.14 cm³