1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lutik1710 [3]
3 years ago
6

Find the time-domain sinusoid for the following phasors:_________

Engineering
1 answer:
sattari [20]3 years ago
3 0

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

You might be interested in
Which option distinguishes the members of a software deployment process team most likely involved in the following scenario?
Alchen [17]

Answer:

A local bank, with several branches in three cities, requests changes to its mortgage calculation software.

5 0
3 years ago
A hollow pipe is submerged in a stream of water so that the length of the pipe is parallel to the velocity of the water. If the
Arlecino [84]

Answer:

increases by a factor of 6.

Explanation:

Let us assume that the initial cross sectional area of the pipe is A m² while the initial velocity of the water is V m/s², hence the flow rate of the water is:

Initial flow rate = area * velocity = A * V = AV m³/s

The water speed doubles (2V m/s) and the cross-sectional area of the pipe triples (3A m²), hence the volume flow rate becomes:

Final flow rate = 2V * 3A = 6AV m³/s = 6 * initial flow rate

Hence, the volume flow rate of the water passing through it increases by a factor of 6.

8 0
3 years ago
Solar energy stored in large bodies of water, called solar ponds, is being used to generate electricity. If such a solar power p
fgiga [73]

Answer: 1.137*10^7 Btu/h.

Explanation:

Given data:

Efficiency of the plant = 4.5percent

Net power output of the plant = 150kw

Solution:

The required collection rate

QH = W/n

= 150/0.045 * 0.94782/ 1 /60 */60 Btu/h.

= 3333.333 *3412.152Btu/h.

= 11373840 Btu/h

= 1.137*10^7 Btu/h.

3 0
2 years ago
A liquid refrigerant (sg=1,2) is flowing at a weight flow rate of 20,9 N/h. Refrigerant flashes into a vapor and its specific we
Iteru [2.4K]

Answer:

Explanation:

volume of 20.9 N

= 20.9 / 11.5 m³

= 1.8174 m³

In one hour 1.8174 m³ flows

in one second volume flowing = 1.8174 / 60 x 60

= 5 x 10⁻⁴ m³

Rate of volume flow = 5 x 10⁻⁴ m³ / s .

5 0
3 years ago
A civil engineer is studying a left-turn lane that is long enough to hold seven cars. Let X be the number of cars in the line at
BartSMP [9]

Answer:

a) C= 1/120

b) P(X>=5) = 0.333

Explanation:

The attached file contains the explanation for the answers

7 0
3 years ago
Read 2 more answers
Other questions:
  • In this milestone we will create a Course class to represent a course and display its information on the screen. We will create
    9·1 answer
  • A metallic material with yield stress of 140 MPa and cross section of 300 mm x 100 mm, is subjected to a tensile force of 8.00 M
    12·1 answer
  • A force 25 N makes an angle of 30,45 and 75 degree with x,y and z axis. What should be the corresponding force vector?
    8·1 answer
  • -0-1"<br> -0<br> -20<br> -15<br> -10<br> 0<br> -5
    9·1 answer
  • Module 42 Review and Assessment
    7·1 answer
  • 1. Asphyxiation is a hazard posed by Compressed Natural Gas (CNG) vehicles and can be detected when you notice
    7·1 answer
  • Drag each label to the correct location on the image.
    5·2 answers
  • Calculate the percentage of recyclables in high socioeconomic localities.
    13·1 answer
  • 14. The flow water in a 10-in Schedule 40 pipe is to be metered. The temperature of the water is
    8·1 answer
  • There are three homes being built, each with an identical deck on the back. Each deck is comprised of two separate areas. One ar
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!