1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lutik1710 [3]
3 years ago
6

Find the time-domain sinusoid for the following phasors:_________

Engineering
1 answer:
sattari [20]3 years ago
3 0

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

You might be interested in
Air is pumped from a vacuum chamber until the pressure drops to 3 torr. If the air temperature at the end of the pumping process
malfutka [58]

Answer:

The final pressure is 3.16 torr

Solution:

As per the question:

The reduced pressure after drop in it, P' = 3 torr = 3\times 0.133\ kPa

At the end of pumping, temperature of air, T = 5^{\circ}C = 278 K

After the rise in the air temperature, T' = 20^{\circ}C = 293 K

Now, we know the ideal gas eqn:

PV = mRT

So

P = \frac{m}{V}RT

P = \rho_{a}RT          (1)

where

P = Pressure

V = Volume

\rho_{a} = air\ density

R = Rydberg's constant

T = Temperature

Using eqn (1):

P = \rho_{a}RT

\rho_{a} = \frac{P}{RT}

\rho_{a} = \frac{3 times 0.133\times 10^{3}}{0.287\times 278} = 0.005 kg/m^{3}

Now, at constant volume the final pressure, P' is given by:

\frac{P}{T} = \frac{P'}{T'}

P' = \frac{P}{T}\times T'

P' = \frac{3}{278}\times 293 = 3.16 torr

7 0
4 years ago
What is 12 cm theodolite​
Klio2033 [76]

Answer:

Answer below :)

Explanation:

<u>SIZE OF THEODOLITE:</u> A theodolite is designated by diameter of the graduated circle on the lower plate. The common sizes are 8 cm to 12 cm while<em> 14 cm</em> to <em>25 cm</em> instrument are used for triangulation work.

4 0
3 years ago
Read 2 more answers
The tolerance for a geometric can be easily identified by reading the _________.
baherus [9]

Answer:

C

Explanation:

4 0
3 years ago
Read 2 more answers
fdkgdsvdgvdfgvsdcvbfbfdbvfdbsdvbesgvdslgfkrledmgoskflodjgloerjgvoljgegjp;erorf;wgp;kiaers;ogjo;rhgerjfrejgfdlhodjglodjheihtgo;rg
RSB [31]

Answer:

kjeo;fwigyds79ay08u-9[onpuefi2 ugw]yw=i\-o3ef

pw]oe;iLH[U

I\EF]

';/ilewuf[p';w iflkh;pif;oewu hf;wfyw hfu we

Explanation:

3 0
3 years ago
Someone make me brainleist please
charle [14.2K]

Answer:

okay will do

Explanation:

7 0
2 years ago
Other questions:
  • If a plus sight of 12.03 ft is taken on BM A, elevation 312.547 ft, and a minus sight of 5.43 ft is read on point X, calculate t
    13·1 answer
  • Water flows through a horizontal 60 mm diameter galvanized iron pipe at a rate of 0.02 m3/s. If the pressure drop is 135 kPa per
    9·1 answer
  • A square (12.5 mm × 12.5 mm) silicon chip is insulated on one side and cooled on the opposite side by atmospheric air in paralle
    14·1 answer
  • SEICUL UC CULTELL allsvel.
    9·2 answers
  • Let S = { p q |p, q are prime numbers greater than 0} and E = {0, −2, 2, −4, 4, −6, 6, · · · } be the set of even integers. . Pr
    6·1 answer
  • What is the probability that Tina will NOT wear a white t-shirt on the first day of her trip?
    12·1 answer
  • What is a radio wave made up of? Molecules? Electrons? Other?
    15·2 answers
  • What are Teets<br><br> I am so confused right kn
    9·1 answer
  • Discuss how you could measure Earth's diameter using nothing but a shadow-casting stick, a protractor, and a car's trip odometer
    11·1 answer
  • When conducting an immediate charge on 2023 ariya, what is the first step if the timer is set?.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!