Answer:
(a) Surface energy is greater than grain boundary energy due to the fact that the bonds of the atoms on the surface are lower than those of the atoms at the grain boundary. The energy is also directly proportional to the number of bonds created.
(b) The energy of a high-angle grain boundary is higher than that of a small-angle grain boundary because the high-angle grain boundary has a higher misalignment and smaller number of bonds than a small-angle grain boundary.
Explanation:
(a) Surface energy is greater than grain boundary energy due to the fact that the bonds of the atoms on the surface are lower than those of the atoms at the grain boundary. The energy is also directly proportional to the number of bonds created.
(b) The energy of a high-angle grain boundary is higher than that of a small-angle grain boundary because the high-angle grain boundary has a higher misalignment and smaller number of bonds than a small-angle grain boundary.
Answer: heat loss through wall is 16.58034kW
Temperature of inside wall surface is 47°c
Temperature of outside wall surface is -2.7°c
Explanation:detailed calculation and explanation is shown in the image below.
Answer:
0.4 gallons per second
Explanation:
A function shows the relationship between an independent variable and a dependent variable.
The independent variable (x values) are input variables i.e. they don't depend on other variables while the dependent variable (y values) are output variables i.e. they depend on other variables.
The rate of change or slope or constant of proportionality is the ratio of the dependent variable (y value) to the independent variable (x value).
Given that the garden hose fills a 2-gallon bucket in 5 seconds. The dependent variable = g = number of gallons, the independent variable = t = number of seconds.
Constant of proportionality = g / t = 2 / 5 = 0.4 gallons per second