Answer:
A root-type supercharger works similar to that of an air pump. It pumps air into the intake of the engine. Within the engine cylinder, the compression of the air-fuel mixture takes place. A centrifugal supercharger, works like a turbo, compresses the air in it and then delivers it to the engine.
The free-body diagram of the beam which supports the 80-kg load and is supported by the pin at A can be seen in the image attached below.
The first image shows the diagram of the beam and the second image shows the free-body diagram of the beam.
The resolution of forces in the system is well understood by the principle of equilibrium where a stationary body will remain balanced when subject to parallel forces provided that the total sum of the overall external forces is zero.
The free-body diagram is a graphical representation used to visualize the forces applied to an object.
The equilibrium of forces on the x-axis is:

The equilibrium of forces on the y-axis is:

The equilibrium condition at any point is:

From the free body diagram attached in the second image below,
- the horizontal reaction is located at point A as
- the vertical reaction is located at point A as
- the tension = T
- the weight = W
Therefore, we can conclude that the free-body diagram of the beam which supports the 80-kg load and is supported by the pin at A can be seen in the image attached below.
Learn more about the free-body diagram here:
brainly.com/question/19345060?referrer=searchResults
Answer:
(a) water height =408.66 in.
(b) mercury height=30.04 in.
Explanation:
Given: P=14.769 psi ( 1 psi= 6894.76
)
we know that 
where 
h=height.
Given that P=14.769 psi ⇒P= 101828.6 7
(a)

⇒101828.67=
=10.38 m
So water barometer will read 408.66 in. (1 m=39.37 in)
(b) 
=13600
So 101828.67=
=0.763 m
So mercury barometer will read 30.04 in.
Answer:
Vx = 6.242 x 10raised to power 15
Vy = -6.242 x 10raised to power 15
Explanation:
from E = IVt
but V = IR from ohm's law and Q = It from faraday's first law
I = Q/t
E = Q/t x V x t = QV
hence, E =QV
V = E/Q
Answer:
increases by a factor of 6.
Explanation:
Let us assume that the initial cross sectional area of the pipe is A m² while the initial velocity of the water is V m/s², hence the flow rate of the water is:
Initial flow rate = area * velocity = A * V = AV m³/s
The water speed doubles (2V m/s) and the cross-sectional area of the pipe triples (3A m²), hence the volume flow rate becomes:
Final flow rate = 2V * 3A = 6AV m³/s = 6 * initial flow rate
Hence, the volume flow rate of the water passing through it increases by a factor of 6.