The nickel, itself ferromagnetic, reduces the magnetism in stainless steel but not to zero. Austenitic stainless steel is defined as the steel crystal structure that is face centered cubic which is the same structure hot iron has as one of the allotropes of iron. Nickel above a certain percentage (18) stabilizes austenite structure just as if you took carbon steel and heated it above 730–770 C. Above this temperature the structure is FCC and above the Currie temperature where magnetism is killed due to the isotopic symmetry of the structure. However, you can still get a small magnetic attraction from austenitic stainless steel if it is cold worked, heat treated a certain way or welded. So it is not a guarantee that austenitic stainless is totally non magnetic.
1. Igneous roc
2. Weathering & erosion
3. Sediments
4. Sedimentary rock
5. Melting
6. Heat & pressure
Hope this is helpful
<u>Answer:</u> The outermost valence electron enters the p orbital.
<u>Explanation:</u>
Valence electrons are defined as the electrons which are present in outer most orbital of an atom.
Sulfur is the 16th element of the periodic table having 16 electrons.
Electronic configuration of sulfur atom is 
The number of valence electrons are 2 + 4 = 6
These 6 electrons enter s-orbital and p-orbital but the outermost valence electron will enter the p-orbital.
Hence, the outermost valence electron enters p orbital.
Most atoms have three different subatomic particles inside them: protons, neutrons, and electrons. The protons and neutrons are packed together into the center of the atom(which is called the nucleus) and the electrons, which are very much smaller, whizz around the outside. Most of an atom is empty space.
I hope this helps you! :D