Answer:
2.22 g/L
Explanation:
There's a relationship using the ideal gas law between molar mass and density:
, where MM is the molar mass, d is the density, R is the gas constant, T is the temperature, and P is the pressure.
We know from the problem that MM = 32.49 g/mol, T = 458 Kelvin, and P = 2.569 atm. The gas constant, R, in terms of the units atm and Kelvin is 0.08206. Let's substitute these values into the formula:


Solve for d:
d * 0.08206 * 458 K = 32.49 * 2.569
d = (32.49 * 2.569) / (0.08206 * 458 K) ≈ 2.22 g/L
The answer is thus 2.22 g/L.
<em>~ an aesthetics lover</em>
Answer:
It sounds like they are studying French phonemes
Explanations:
I just learned this.
Answer:
![K=K_1*K_2\\\\K=\frac{[H_2]^3[CO_2][H_2]}{[CH_4][H_2O][H_2O]}](https://tex.z-dn.net/?f=K%3DK_1%2AK_2%5C%5C%5C%5CK%3D%5Cfrac%7B%5BH_2%5D%5E3%5BCO_2%5D%5BH_2%5D%7D%7B%5BCH_4%5D%5BH_2O%5D%5BH_2O%5D%7D)
Explanation:
Hello there!
In this case, for the given chemical reaction, it turns out firstly necessary to write the equilibrium expression for both reactions 1 and 2:
![K_1=\frac{[CO][H_2]^3}{[CH_4][H_2O]} \\\\K_2=\frac{[CO_2][H_2]}{[CO][H_2O]}](https://tex.z-dn.net/?f=K_1%3D%5Cfrac%7B%5BCO%5D%5BH_2%5D%5E3%7D%7B%5BCH_4%5D%5BH_2O%5D%7D%20%5C%5C%5C%5CK_2%3D%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D)
Now, when we combine them to get the overall expression, we infer these two are multiplied to get:
![K=K_1*K_2\\\\K=\frac{[CO][H_2]^3}{[CH_4][H_2O]} *\frac{[CO_2][H_2]}{[CO][H_2O]}\\\\K=\frac{[H_2]^3[CO_2][H_2]}{[CH_4][H_2O][H_2O]}](https://tex.z-dn.net/?f=K%3DK_1%2AK_2%5C%5C%5C%5CK%3D%5Cfrac%7B%5BCO%5D%5BH_2%5D%5E3%7D%7B%5BCH_4%5D%5BH_2O%5D%7D%20%2A%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D%5C%5C%5C%5CK%3D%5Cfrac%7B%5BH_2%5D%5E3%5BCO_2%5D%5BH_2%5D%7D%7B%5BCH_4%5D%5BH_2O%5D%5BH_2O%5D%7D)
Regards!
T1-T2
40°+273=313-20°+273=293
313-293=20
the final temp is 20°
C) It contains the same number of electrons and protons.