The Density of the metal is 5.6 g/cm³
<h3>What is the density of a substance?</h3>
The density of a substance is the ratio of the mass and the volume of the substance.
The density of the metal is calculated as follows:
mass of metal = 1.4 kg = 1400 g
volume of metal = 3.2 * 17.1 * 4.6 = 251.712 cm³
Density of metal = 1400 g/251.712 cm³
Density of the metal = 5.6 g/cm³
Therefore, the density of the metal is obtained from the mass and the volume of the metal.
Learn more about density at: brainly.com/question/1354972
#SPJ1
Answer:
There are 3, 64 moles of NaCl.
Explanation:
First we calculate the mass of 1 mol of NaCl, starting from the atomic weights of Na and Cl obtained from the periodic table. Then we calculate themoles in 213 grams of NaCl, making a simple rule of three:
Weight NaCl= Weight Na + Weight Cl = 23 g + 35, 5 g= 58, 5 g/ mol
58,5 g ------1 mol NaCl
213 g---------x= (213 g x 1 mol NaCl)/ 58, 5 g= <em>3, 64 mol NaCl</em>
Answer:
B. CA, 14
Explanation:
Atoms of elements contain small particles known as electrons, neutrons, and protons. The nucleus of an atom is made up of neutrons and protons which are at the center of the atom. Electrons on the other hand surrounds the nucleus. Electron has negative charge while proton has a positive charge. The number of neutrons is equivalent to the number of protons . In addition, the number of protons is equal to mass number minus the number of electrons.
For the compound
, it can be broken down into
and
. Its ion has a mass of 34 and 18 electrons which means it has already lost 2 electrons.
Therefore:
For the given element, the number of electrons is 18+2 = 20 electrons.
The number of protons = 34 - 20 = 14.
And the number of neutrons is 14.
Only option B has the correct answer.
Answer:
D. The equipment needed to accommodate the high temperature and pressure will be expensive to produce.
Explanation:
Hello!
In this case, for the considered reaction, it is clear it is an exothermic reaction because it produces energy; and therefore, the higher the temperature the more reactants are yielded as the reverse reaction is favored. Moreover, since the effect of pressure is verified as favoring the side with fewer moles; in this case the products side (2 moles of ammonia).
In such a way, the high pressure favors the formation of ammonia whereas the high temperature the formation of hydrogen and nitrogen and therefore, option A is ruled out. Since the high pressure shifts the reaction rightwards and the high temperature leftwards, we would not be able to know whether the reaction has ended or not because it will be a "go and come back" process, that is why B is also discarded. Now, since hydrogen and nitrogen would be the "wastes", we discard C because they are not toxic. That is why the most accurate answer would be D. because it is actually true that such equipment is quite expensive.
Best regards!
Hybridisation influences the bond length and bond enthalpy strength in organic compounds. The sp hybrid orbital contains more s character and hence it is closer to its nucleus and forms shorter and stronger bonds than the sp3 hybrid orbital.