I believe it's D! Hope you can help with my question!
1)
<span>m(NaCl) = 1.95 g
V(H2O) = 250mL
M(NaCl) = </span><span>58.5 g/mole
Since waters density value is 1g/mL, it can be assumed that volume and mass of water are same values:
</span>V(H2O) = 250ml = 250g = 0.25 kg<span>
</span><span>molality of NaCl:
</span><span>
n(NaCl)=m/M=1.95/58.5= 0.033 mole
</span>molality b(NaCl)=n(NaCl) / V (H2O)= 0.033/0.25 = 0.132 mol/kg
<span>
milimolality of NaOH = 0.132/0,001 = 132 mmole/kg
</span>
milliosmolality of NaOH = milimolality x N of ions formed in dissociation
Since NaCl dissociates into 2 ions in solution:
<span>
</span>milliosmolality of NaOH = 132 x 2 = 264 osmol<span>es/kg
</span>
2)
m(gl) = 9 g
V(H2O) = 250mL
M(NaCl) = 180 g/mole
Since waters density value is 1g/mL, it can be assumed that volume and mass of water are same values:
V(H2O) = 250ml = 250g = 0.25 kg
molality of glucose:
n(gl)=m/M=9/180= 0.05 mole
molality b(gl)=n(gl) / V (H2O)= 0.05/0.25 = 0.2 mol/kg
milimolality of glucose = 0.132/0,001 = 200 mmole/kg
milliosmolality of glucose = milimolality x N of ions formed in dissociation
Since glucose does not dissociate, milimolality and milliosmolality are same:
milliosmolality of glucose = 200 osmoles/kg
3)
The osmosis represents the diffusion of solvent molecules through a semi-permeable membrane that allows passage solvent molecules but does not to the dissolved substance molecule. The osmosis occurs when the concentrations of the solution on both sides of the membrane are different. Since the semi-permeable membrane only permeates the solvent molecules, but not the particles of the dissolved substance, it occurs the solvent diffusion through the membrane, i.e. the solvent molecules pass through the membrane to equalize the concentration on both sides of the membrane. Solvents molecules move from the middle with a lower concentration in the middle with a higher concentration of dissolved substances.
In our case, osmosis will occur because the concentration of NaCl solution and the concentration of glucose solution do not have same values. Osmosis will occur in the direction of glucose solution because it has a lower concentration.
Answer:
Michaelis constant is known as km which is the substrate concentration that encourages the compound to work at half maximum velocity represented by Vmax/2. Michaelis constant is inversely related to the substrate and the affinity of the enzyme.
Induced fit model: The premise of the purported induced fit hypothesis, which expresses that the attachment or association of a substrate or some other atom to an enzyme causes an adjustment to the enzyme in order to fit or restrain its activity.
In substrate, analog Km or Michaelis constant will be high as the substrate will stay because of analogs inhibit activity.
In the transitional state, analog Km will be in the middle of the substrate and product analogs. Progress state analogs are synthetic mixes with a structure catalyzed reaction that looks like the progressing condition of a substrate atom in a compound enzyme.
In item simple thus Km is the least.
0.0013 M = product ananlog,
0.025 M=Transition state, and
0.0045 M = Substrate analog
Answer:
Sounds travels in transverse waves requires a medium to travel through
Schrodinger developed a famous equation that allows the solutions for electron wave functions to be found given a specific potential. For the case of an atom, Schroginger's equation allows the determination of electron wave functions. These wave functions tell us how electrons are distributed in space around the atom.