1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Otrada [13]
3 years ago
9

A particle of mass m collides with a second particle of mass m. Before the collision, the first particle is moving in the x-dire

ction with a speed 2v and the second particle is at rest. After the collision, the second particle is moving in the direction 45o below the x-axis and with a speed √2v.
a) Find the velocity of the first particle after the collision. (i.e. find the x-and y-components of the velocity.)
b) Find the total kinetic energy of the two particles before and after the collision.
c) Is the collision elastic or inelastic?
Physics
1 answer:
oee [108]3 years ago
6 0

Answer:

a) v, v

b) 2mv^2

c) Elastic collion

Explanation:

(a) The velocity of the second particle after the collision is (v2x,v2y)=(v,−v).  From momentum conservation in x-direction

Here x, y represent direction.They are not variable. 1 and 2 represent before and after.

2vm=v1xm+v2xm, we find v1x=v.

From momentum conservation in y-direction

0 =v1ym+v2ym, we findv1y=v.

(b) By energy conservation principle

Before: K=1/2m(2v)^2=2mv^2.

After: K=1/2m(v^2(1x)+v^2(1y))+12m(v22x+v22y)=2mv^2

(c) The collision is elastic

You might be interested in
Explain your problem of<br>Federalism<br>​
telo118 [61]

That is more of a History of English question.

6 0
3 years ago
A wedge with an inclination of angle θ rests next to a wall. A block of mass m is sliding down the plane. There is no friction b
Softa [21]

Answer:

  The net force on the block  F(net)  = mgsinθ).

   Fw =mg(cosθ)(sinθ)

Explanation:

(a)

Here, m is the mass of the block, n is the normal force, \thetaθ is the wedge angle, and Fw  is the force exerted by the wall on the wedge.

Since the block sliding down, the net force on the block is along the plane of the wedge that is equal to horizontal component of weight of the block.

                    F(net)  = mgsinθ

The net force on the block  F(net)  = mgsinθ).

The direction of motion of the block is along the direction of net force acting on the block. Since there is no frictional force between the wedge and block, the only force acting on the block along the direction of motion is mgsinθ.

(b)

From the free body diagram, the normal force n is equal to mgcosθ .

                           n=mgcosθ

The horizontal component of normal force on the block is equal to force

                           Fw=n*sin(θ) that exerted by the wall on the wedge.

Substitute mgcosθ for n in the above equation;

                           Fw =mg(cosθ)(sinθ)

Since, there is no friction between the wedge and the wall, there is component force acting on the wall to restrict the motion of the wedge on the surface and that force is arises from the horizontal component for normal force on the block.

6 0
3 years ago
You paddle a conoe with a force of 325 N. You and the canoe have a combined mass of 250 kg. What is the acceleration of the cano
Brums [2.3K]

f = ma

Rearranging it, we get;

a =  \frac{f}{m}
Where a is the acceleration, f is the force, and m is the mass

a =  \frac{325}{250}
a = 1.3 \frac{m}{ {s}^{2} }

7 0
3 years ago
A dockworker applies a constant horizontal force of 90.0 N to a block of ice on a smooth horizontal floor. The frictional force
Oliga [24]

Answer:

The mass of the ice block is equal to 70.15 kg

Explanation:

The data for this exercise are as follows:

F=90 N

insignificant friction force

x=13 m

t=4.5 s

m=?

applying the equation of rectilinear motion we have:

x = xo + vot + at^2/2

where xo = initial distance =0

vo=initial velocity = 0

a is the acceleration

therefore the equation is:

x = at^2/2

Clearing a:

a=2x/t^2=(2x13)/(4.5^2)=1.283 m/s^2

we use Newton's second law to calculate the mass of the ice block:

F=ma

m=F/a = 90/1.283=70.15 kg

6 0
3 years ago
Read 2 more answers
How much total energy is dissipated in 10. seconds
noname [10]

Answer : Total energy dissipated is 10 J

Explanation :

It is given that,

Time. t = 10 s

Resistance of the resistors, R = 4-ohm

Current, I = 0.5 A

Power used is given by :

P=\dfrac{E}{t}

Where

E is the energy dissipated.

So, E = P t.............(1)

Since, P=I^2R

So equation (1) becomes :

E=I^2Rt

E=(0.5\ A)^2\times 4\Omega \times 10\ s

E=10\ J

So, the correct option is (3)

Hence, this is the required solution.

7 0
3 years ago
Read 2 more answers
Other questions:
  • A stone is dropped into a lake, creating a circular ripple that travels outward at a speed of 50 cm/s. Find the rate at which th
    8·1 answer
  • A stone is dropped from rest from the top of a cliff into a pond below. If its initial height is 10 m, what is its speed when it
    10·1 answer
  • 2. Derive an expression for the final velocity of an object dropped from some height (h)
    11·1 answer
  • Be sure to answer all parts. Assume the diameter of a neutral helium atom is 1.40 × 102 pm. Suppose that we could line up helium
    9·1 answer
  • Starting from rest, a 0.0367 kg steel ball sinks into a vat of corn syrup. The thick syrup exerts a viscous drag force that is p
    15·1 answer
  • When a 1.7 m tall man stands, his brain is 0.5 m above his heart.
    12·1 answer
  • A tennis ball moves 16 meters northward, then 22 meters southward, then 12 meters northward, and finally 32 meters southward.
    6·1 answer
  • What was your favorite thing to learn in physics
    8·1 answer
  • A cart moves along a track at a velocity of 3.5 cm/s. When a force is applied to the cart, its velocity increases to 8.2 cm/s. I
    5·1 answer
  • A force Fof 40000 lbf is applied to rod AC the negative Y-direction. The rod is 1000 inches tall. A Force P of 25 lbf is applied
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!