Explanation:
Since, entropy is the measure of degree of randomness. So, more randomly the molecules of a substance are moving more will be its entropy.
- For example, when a solid melts then it means heat is absorbed by it due to which its molecules have gained energy. As a result, they collide with each other and hence, entropy will increase.
- Evaporation of a liquid will also cause the liquid to change its state from liquid to gas. This means molecules will go far away from each other leading to an increase in the entropy.
- Sublimation is a process of conversion of a solid into gaseous phase without going through liquid phase. So, in this case also entropy will increase due to gain in energy by the molecules of a solid.
- In freezing, molecules of a substance come closer to each other and acquire less energy. Hence, entropy decreases.
- Mixing is a process of combining two or more substances physically with each other. This leads to increase in entropy of a substance.
- In separation molecules are separated from each other leading to a decrease in energy. Hence, entropy will also decrease.
- Diffusion is a process in which molecules are able to rapidly move from one place to another. Hence, entropy increases when diffusion takes place.
Thus, we can conclude that melting of a solid, evaporation of a liquid, sublimation, mixing and diffusion involve an increase in the entropy of the system under consideration.
Answer:
The value is 
Explanation:
From the question we are told that
The value of charge on each three point charge is

The length of the sides of the equilateral triangle is 
Generally the total potential energy is mathematically represented as
![U = k * [ \frac{q_1 * q_2}{r} + \frac{q_2 * q_3}{r} + \frac{q_3 * q_1}{r} ]](https://tex.z-dn.net/?f=U%20%20%3D%20k%20%2A%20%20%5B%20%5Cfrac%7Bq_1%20%2A%20%20q_2%7D%7Br%7D%20%20%2B%20%20%5Cfrac%7Bq_2%20%2A%20%20q_3%7D%7Br%7D%20%20%20%2B%20%5Cfrac%7Bq_3%20%2A%20%20q_1%7D%7Br%7D%20%5D)
=>
Here k is coulomb constant with value 
=>
The given question is incomplete. The complete question is as follows.
An oxygen molecule is adsorbed onto a small patch of the surface of a catalyst. It's known that the molecule is adsorbed on 1 of 36 possible sites for adsorption. Calculate the entropy of this system.
Explanation:
It is known that Boltzmann formula of entropy is as follows.
s = k ln W
where, k = Boltzmann constant
W = number of energetically equivalent possible microstates or configuration of the system
In the given case, W = 36. Now, we will put the given values into the above formula as follows.
s = k ln W
=
= 
Thus, we can conclude that the entropy of this system is
.
<span>Cells may appear inactive during this stage, but they are quite the opposite. This is the longest period of the complete cell cycle during which DNA replicates, the centrioles divide, and proteins are actively produced. </span>