B I think for 19 and D for 20
Since the product of P·Vis constant along an isotherm, an expansion to twice the volume implies a pressure reduction to half the original pressure. I hope my answer has come to your help. God bless and have a nice day ahead!<span>
</span>
Answer:
4.617 s
Explanation:
The speed of 60 mi/h can be converted to m/s:
(60 mi/h) × (1609.344 m/mi) × (1 h)/(3600 s) = 26.8244 m/s
The relationship between speed and acceleration is ...
v = at
t = v/a = (26.8244 m/s)/(5.81 m/s²) ≈ 4.617 s
It will take the car 4.617 seconds to reach 60 mi/h starting from rest.
Answer:
A) 667 J
B) 381.4 J
C) 0 J
D) 245.4 J
E) 40.2J
F) 2 m/s
Explanation:
Let g = 9.81 m/s2
A) The work done on the suitcase is the product of the force applied and the distance travelled:
w = Fs = 145 * 4.6 = 667 J
B) The work done by gravitational force the dot product between the gravity vector and the distance vector
C) As the normal force vector is perpendicular to the distance vector, the work done by the normal force is 0
D) The work done on the suitcase by friction force is the product of the force applied and the distance travelled, whereas friction force is the product of normal force and coefficient
E) The total workdone on the suite case would be the pulling work subtracted by gravity work and friction work
F) As the suit case has 0 kinetic and potential energy at the bottom, and the total work done is converted to kinetic energy at 4.6 m along the ramp, we can conclude that: