Communication.
When people exchange ideas about science, they are communicating with one another to both share and obtain knowledge. Collaboration is a large part of this communication, as the exchange of these ideas often leads to new discoveries and inventions.
Consider the equation for calculating molarity: (no. of mole of solute)÷(volume of solution)
First, let's find the no. of mole of solute in AgNO3. As (no. of mole) = mass / molar mass
no. of mole of 85.0g of AgNO3 = 85.0/(107.9+14.0+16.0x3)
=0.5mol
Since the volume of the solution has to be in dm3, just divide the volume in cm3 by 1000 to get the volume in dm3.
Volume of solution = 500/1000
= 0.5 dm3
Therefore, the molarity is
0.5/0.5
=1.0M
The answer should be B.
Answer:
a) 3.969
b) 3.489
Explanation:
a) Calculate the pk, value of the acid HA
PH of salt hydrolysis
P
= 1/2 ( pkw + pka + logC )
8.7 * 2 = 14 + log ( 0.27 ) + Pka
∴ Pka = 3.9686 ≈ 3.969
b) Calculate the PH of a solution containing 0.3 M HA and 0.1 M NaA
PH = Pka + log ( salt / acid )
= 3.9686 + log ( 0.1 / 0.3 )
= 3.9686 - 0.48 = 3.489
Answer:
σ -> 2sp²
π -> 2p
Explanation:
The carbon has valence shell 2s 2p, and, both of them make 3 σ bonds and 1 π bond. The π bond only occurs in multiple bonds.
The σ bonds happen at the hybrids orbitals, which are orbitals formed by the association of the pure orbitals (s, p, d, f). The hybridization occurs to make possible to the atom to do the bonds because the electrons need to be isolated in it.
On the other hand, the π bonds only occur at pure orbitals. The subshell s only has 1 orbital, and the subshell p has 3 orbitals. So, because there are 3 σ bonds, it's necessary 3 hybrids orbitals (1 of s + 2 of p).
The σ bonds happen at the orbital 2sp² and the π bond at the 2p pure orbital.