Answer:
b. The weak base of an alkaline buffer will accept hydrogen protons when a strong acid is added to the solution
d.The conjugate acid of an alkaline buffer will donate hydrogen protons when a strong base is added to the solution.
Explanation:
A buffer is a solution that resist pH change, it shows minimal change upon addition of small amount of strong acid or strong base. An alkaline buffer will have a basic pH, above 7. It is made by mixing a weak base and its salt with a strong acid. An example of an alkaline buffer is carbonate-bicarbonate buffer that is prepared using varying amount of anhydrous sodium carbonate and volume of solution of sodium bicarbonate to get pH range between 9.2 to 10.7
Within the buffer,the salt is completely ionized while the weak base is partly ionized. on addition of acid, the released protons will be removed by the bicarbonate ion to form sodium carbonate; on addition of base, the hydroxide ion released by the base will be removed by the hydrogen ions to form water and the pH remains relatively the same
i didn’t mean to put this opps
Answer:
There will be produced 1.71 moles of B which contain 1.03×10²⁴ molecules
Explanation:
The example reaction is:
2A → 3B
2 moles of A produce 3 moles of B
If we have the mass of A, we convert it to moles and then, we make the rule of three: 29.2 g / 25.6g/mol = 1.14 moles
Therefore 2 moles of A produce 3 moles of B
1.14 moles of A will produce (1.14 . 3) / 2 = 1.71 moles of B are produced
Now we can determine, the number of molecules
1 mol has NA molecules (6.02×10²³)
1.71 moles have (1.71 . NA) = 1.03×10²⁴ molecules
To find AH°rxn, we use the following equation:
What we're going to do is to sum the enthalpy of the products and then substract with the enthalpy of the reactives:
As you can see, we need to multiply by the coefficients of the reaction.
Now, just replace the values of the table:
So the answer is -822.2kJ/mol.
For b:
Now, just replace the values of the table:
The answer for b is -1036kJ/mol.
Answer:
can you explain the question