<h2><em>Dell realizes that their ultimate success lies with the success of their supply chainand its ability to generate supply chain surplus. If Dell was to view supply chainoperations as a zero sum game, they would lose their competitive edge as their suppliers’ businesses struggled. Dell’s profit gained at the expense of their supplychain partners would be short lived. Just as a physical chain is only as strong as itsweakest link, the supply chain can be successful only if all members cooperateand focus on a global optimum rather than many local optima.</em></h2><h2><em></em></h2><h2><em></em></h2><h2><em>HOPE IT HELPS (◕‿◕✿)</em></h2>
Answer:

Explanation:
Previous concepts
Angular momentum. If we consider a particle of mass m, with velocity v, moving under the influence of a force F. The angular momentum about point O is defined as the “moment” of the particle’s linear momentum, L, about O. And the correct formula is:

Applying Newton’s second law to the right hand side of the above equation, we have that r ×ma = r ×F =
MO, where MO is the moment of the force F about point O. The equation expressing the rate of change of angular momentum is this one:
MO = H˙ O
Principle of Angular Impulse and Momentum
The equation MO = H˙ O gives us the instantaneous relation between the moment and the time rate of change of angular momentum. Imagine now that the force considered acts on a particle between time t1 and time t2. The equation MO = H˙ O can then be integrated in time to obtain this:

Solution to the problem
For this case we can use the principle of angular impulse and momentum that states "The mass moment of inertia of a gear about its mass center is
".
If we analyze the staritning point we see that the initial velocity can be founded like this:

And if we look the figure attached we can use the point A as a reference to calculate the angular impulse and momentum equation, like this:

](https://tex.z-dn.net/?f=0%2B%5Csum%20%5Cint_%7B0%7D%5E%7B4%7D%2020t%20%280.15m%29%20dt%20%3D0.46875%20%5Comega%20%2B%2030kg%5B%5Comega%280.15m%29%5D%280.15m%29)
And if we integrate the left part and we simplify the right part we have

And if we solve for
we got:

Answer:
526.5 KN
Explanation:
The total head loss in a pipe is a sum of pressure head, kinetic energy head and potential energy head.
But the pipe is assumed to be horizontal and the velocity through the pipe is constant, Hence the head loss is just pressure head.
h = (P₁/ρg) - (P₂/ρg) = (P₁ - P₂)/ρg
where ρ = density of the fluid and g = acceleration due to gravity
h = ΔP/ρg
ΔP = ρgh = 1000 × 9.8 × 7.6 = 74480 Pa
Drag force over the length of the pipe = Dynamic pressure drop over the length of the pipe × Area of the pipe that the fluid is in contact with
Dynamic pressure drop over the length of the pipe = ΔP = 74480 Pa
Area of the pipe that the fluid is in contact with = 2πrL = 2π × (0.075/2) × 30 = 7.069 m²
Drag Force = 74480 × 7.069 = 526468.1 N = 526.5 KN
Answer:
E=52000Hp.h
E=38724920Wh
E=1.028x10^11 ftlb
Explanation:
To solve this problem you must multiply the engine power by the time factor expressed in h / year, to find this value you must perform the conventional unit conversion procedure.
Finally, when you have the result Hp h / year you convert it to Ftlb and Wh

E=52000Hp.h

E=38724920Wh

E=1.028x10^11 ftlb