1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RoseWind [281]
3 years ago
15

Miller Indices:

Engineering
1 answer:
svetlana [45]3 years ago
5 0

Answer:

A) The sketches for the required planes were drawn in the first attachment [1 2 1] and the second attachment [1 2 -4].

B) The closest distance between planes are d₁₂₁=a/√6 and d₁₂₋₄=a/√21 with  lattice constant a.

C) Five posible directions that electrons can move on the surface of a [1 0 0] silicon crystal are: |0 0 1|, |0 1 3|, |0 1 1|, |0 3 1| and |0 0 1|.

Compleated question:

1. Miller Indices:

a. Sketch (on separate plots) the (121) and (12-4) planes for a face centered cubic crystal structure.

b. What are the closest distances between planes (called d₁₂₁ and d₁₂₋₄)?

c. List five possible directions (using the Miller Indices) the electron can move on the surface of a (100) silicon crystal.

Explanation:

A)To draw a plane in a face centered cubic lattice, you have to follow these instructions:

1- the cube has 3 main directions called "a", "b" and "c" (as shown in the first attachment) and the planes has 3 main coeficients shown as [l m n]

2- The coordinates of that plane are written as: π:[1/a₀ 1/b₀ 1/c₀] (if one of the coordinates is 0, for example [1 1 0], c₀ is ∞, therefore that plane never cross the direction c).

3- Identify the points a₀, b₀, and c₀ at the plane that crosses this main directions and point them in the cubic cell.

4- Join the points.

<u>In this case, for [1 2 1]:</u>

l=1=1/a_0 \rightarrow a_0=1

m=2=2/b_0 \rightarrow b_0=0.5

n=1=1/c_0 \rightarrow c_0=1

<u>for </u>[1 2 \overline{4}]<u>:</u>

l=1=1/a_0 \rightarrow a_0=1

m=2=2/b_0 \rightarrow b_0=0.5

n=\overline{4}=-4/c_0 \rightarrow c_0=-0.25

B) The closest distance between planes with the same Miller indices can be calculated as:

With \pi:[l m n] ,the distance is d_{lmn}= \displaystyle \frac{a}{\sqrt{l^2+m^2+n^2}} with lattice constant a.

<u>In this case, for [1 2 1]:</u>

<u />d_{121}= \displaystyle \frac{a}{\sqrt{1^2+2^2+1^2}}=\frac{a}{\sqrt{6}}=0.41a<u />

<u>for </u>[1 2 \overline{4}]<u>:</u>

d_{12\overline{4}}= \displaystyle \frac{a}{\sqrt{1^2+2^2+(-4)^2}}=\frac{a}{\sqrt{21}}=0.22a

C) The possible directions that electrons can move on a surface of a crystallographic plane are the directions contain in that plane that point in the direction between nuclei. In a silicon crystal, an fcc structure, in the plane [1 0 0], we can point in the directions between the nuclei in the vertex (0 0 0) and e nuclei in each other vertex. Also, we can point in the direction between the nuclei in the vertex (0 0 0) and e nuclei in the center of the face of the adjacent crystals above and sideways. Therefore:

dir₁=|0 0 1|

dir₂=|0 0.5 1.5|≡|0 1 3|

dir₃=|0 1 1|

dir₄=|0 1.5 0.5|≡|0 3 1|

dir₅=|0 0 1|

You might be interested in
A pointer is spun on a fair wheel of chance having its periphery labeled Trom 0 to 100. (a) Whhat is the sample space for this e
liubo4ka [24]

Answer:

A pointer is spun on a fair wheel of chance having its periphery labeled Trom 0 to 100. (a) Whhat is the sample space for this experiment? (b)What is the probability that the pointer will stop between 20 and 35? (c) What is the probability that the wheel will stop on 58?

​

Explanation:

thats all you said

7 0
3 years ago
Read 2 more answers
A rigid tank contains 2 kg of N2 and 4 kg of Co2 at temperature of 25 C and 1 MPa. Find the partial pressure of each gas respect
lions [1.4K]

Answer: Partial pressures are 0.6 MPa for nitrogen gas and 0.4 MPa for carbon dioxide.

Explanation: <u>Dalton's</u> <u>Law</u> <u>of</u> <u>Partial</u> <u>Pressure</u> states when there is a mixture of gases the total pressure is the sum of the pressure of each individual gas:

P_{total} = P_{1}+P_{2}+...

The proportion of each individual gas in the total pressure is expressed in terms of <u>mole</u> <u>fraction</u>:

X_{i} = moles of a gas / total number moles of gas

The rigid tank has total pressure of 1MPa.

  • Nitrogen gas:

molar mass = 14g/mol

mass in the tank = 2000g

number of moles in the tank: n=\frac{2000}{14} = 142.85mols

  • Carbon Dioxide:

molar mass = 44g/mol

mass in the tank = 4000g

number of moles in the tank: n=\frac{4000}{44} = 90.91mols

Total number of moles: 142.85 + 90.91 = 233.76 mols

To calculate partial pressure:

P_{i}=P_{total}.X_{i}

For Nitrogen gas:

P_{N_{2}}=1.\frac{142.85}{233.76}

P_{N_{2}} = 0.6

For Carbon Dioxide:

P_{total}=P_{N_{2}}+P_{CO_{2}}

P_{CO_{2}} = P_{total}-P_{N_{2}}

P_{CO_{2}}=1-0.6

P_{CO_{2}}= 0.4

Partial pressures for N₂ and CO₂ in a rigid tank are 0.6MPa and 0.4MPa, respectively.

4 0
2 years ago
Why would an aerospace engineer limit the maximum angle of deflection of the control surfaces?
WITCHER [35]

Answer:

You can create high drag which allows a steeper angle without increasing your air speed on landing. you can reduce the length of landing role. Flaps are also used to increase the drag they are retracted when they are not needed. it is adviseable to down he flaps during the time of take off.

4 0
3 years ago
Explain the term electric current as used in engineering principles​
vodomira [7]

Answer:

<em>Electric current is the movement of electrons through a wire. Electric current is measured in amperes (amps) and refers to the number of charges that move through the wire per second. If we want current to flow directly from one point to another, we should use a wire that has as little resistance as possible.</em><em>Current is directly proportional to voltage, inversely proportional to resistance. One of the most common electrical measurements you'll use is the watt, a unit of electrical power: W (Watts) = E (Volts) x I (Amperes). The quantity of electric charge is measured in coulombs.</em><em>They can even pass through bones and teeth. This makes gamma rays very dangerous. They can destroy living cells, produce gene mutations, and cause cancer.</em>

Explanation:

hey mate this is the best answer if you're studying engineering!

8 0
3 years ago
Read 2 more answers
What are the parameters that affect life and drag forces on an aerofoil?
Vinil7 [7]

Answer:

1.The velocity of fluid

2.Fluid properties.

3.Projected area of object(geometry of the object).

Explanation:

Drag force:

 Drag force is a frictional force which offered by fluid when a object is moving in it.Drag force try to oppose the motion of object when object is moving in a medium.

Drag force given as

F_D=\dfrac{1}{2}\rho\ A\ V^2

So we can say that drag force depends on following properties

1.The velocity of fluid

2.Fluid properties.

3.Projected area of object(geometry of the object).

6 0
3 years ago
Other questions:
  • Which solution causes cells to shrink
    13·1 answer
  • What is CQ Thread Ball Valves​
    10·2 answers
  • A steady‐flow gas furnace supplies hot air at a rate of 850 cfm and conditions of 120F and 1.00 atm. The air splits into two bra
    14·1 answer
  • State the mathematical expression to define the availability of equipment over a specified time and operational availability?
    6·1 answer
  • A rectangular open box, 25 ft by 10 ft in plan and 12 ft deep weighs 40 tons. Sufficient amount of stones is placed in the box a
    13·1 answer
  • Who is responsible for conducting a hazard assessment?
    8·1 answer
  • Steam enters an adiabatic turbine at 8 MPa and 500C with a mass flow rate of 3
    11·1 answer
  • For the same cross-sectional area, which column provides the higher buckling load: a circular bar or a circular tube?
    15·1 answer
  • Explain the working and performance of a centrifugal clutch with a sketch​
    6·2 answers
  • A(94,0,14) B(52,56,94) C(10,6,48) D(128,64,10)
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!