Answer:
Glycogen is the primary energy source for muscle and liver cells.
Explanation:
Glycogen is a readily mobilized storage form of glucose. It is a very large, branched polymer of glucose residues that can be broken down to yield glucose molecules when energy is needed. Most of the glucose residues in glycogen are linked by α-1,4-glycosidic bonds. Branches at about every tenth residue are created by α-1,6-glycosidic bonds.
Glycogen is not as reduced as fatty acids are and consequently not as energy rich. Why do animals store any energy as glycogen? Why not convert all excess fuel into fatty acids? Glycogen is an important fuel reserve for several reasons. The controlled breakdown of glycogen and release of glucose increase the amount of glucose that is available between meals. Hence, glycogen serves as a buffer to maintain blood-glucose levels. Glycogen's role in maintaining blood-glucose levels is especially important because glucose is virtually the only fuel used by the brain, except during prolonged starvation. Moreover, the glucose from glycogen is readily mobilized and is therefore a good source of energy for sudden, strenuous activity. Unlike fatty acids, the released glucose can provide energy in the absence of oxygen and can thus supply energy for anaerobic activity.
Answer:
All of the above
Explanation:
firstly, a creep can be explained as the gradual deformation of a material over a time period. This occurs at a fixed load with the temperature the same or more than the recrystallization temperature.
Once the material gets loaded, the instantaneous creep would start off and it is close to electric strain. in the primary creep area, the rate of the strain falls as the material hardens. in the secondary area, a balance between the hardening and recrystallization occurs. The material would get to be fractured hen recrstallization happens. As temperature is raised the recrystallization gets to be more.
Answer:
Q=36444.11 Btu
Explanation:
Given that
Initial temperature = 60° F
Final temperature = 110° F
Specific heat of water = 0.999 Btu/lbm.R
Volume of water = 90 gallon
Mass = Volume x density

Mass ,m= 90 x 0.13 x 62.36 lbm
m=729.62 lbm
We know that sensible heat given as
Q= m Cp ΔT
Now by putting the values
Q= 729.62 x 0.999 x (110-60) Btu
Q=36444.11 Btu
Answer:
blah blah blah sh ut up read learn