Answer: i can see if i can what is the problem
Explanation:
Answer:
2.8
Explanation:
The ideal mechanical advantage of the pulley IMA = D'/D where D' = diameter of output pulley = 7 inches and D = diameter of input pulley = 2.5 inches
So, IMA = D'/D
= 7/2.5
= 2.8
So, the ideal mechanical advantage of the pulley IMA = 2.8
<u>Solution and Explanation:</u>
Volume of gas stream = 1000 cfm (Cubic Feet per Minute)
Particulate loading = 400 gr/ft3 (Grain/cubic feet)
1 gr/ft3 = 0.00220462 lb/ft3
Total weight of particulate matter = 
Cyclone is to 80 % efficient
So particulate remaining = 
emissions from this stack be limited to = 10.0 lb/hr
Particles to be remaining after wet scrubber = 10.0 lb/hr
So particles to be removed = 685.7136- 10 = 675.7136
Efficiency = output multiply with 100/input = 98.542 %
Answer:
a) Tբ = 151.8°C
b) ΔV = - 0.194 m³
c) The T-V diagram is sketched in the image attached.
Explanation:
Using steam tables,
At the given pressure of 0.5 MPa, the saturation temperature is the final temperature.
Right from the steam tables (A-5) with a little interpolation, Tբ = 151.793°C
b) The volume change
Using data from A-5 and A-6 of the steam tables,
The volume change will be calculated from the mass (0.58 kg), the initial specific volume (αᵢ) and the final specific volume
(αբ) (which is calculated from the final quality and the consituents of the specific volumes).
ΔV = m(αբ - αᵢ)
αբ = αₗ + q(αₗᵥ) = αₗ + q (αᵥ - αₗ)
q = 0.5, αₗ = 0.00109 m³/kg, αᵥ = 0.3748 m³/kg
αբ = 0.00109 + 0.5(0.3748 - 0.00109)
αբ = 0.187945 m³/kg
αᵢ = 0.5226 m³/kg
ΔV = 0.58 (0.187945 - 0.5226) = - 0.194 m³
c) The T-V diagram is sketched in the image attached