First, we write the balanced equation for this reaction:
2KI + Pb(NO₃)₂ → 2KNO₃ + PbI₂
From this equation, we see that there are 2 moles of potassium iodide required for each mole of lead (II) nitrate. Moreover, we may use the formula:
Moles = volume (in L) * molarity
We find the molar relation ship for KI : Pb(NO₃)₂ to be 2 : 1. So:
M₁V₁ = 2M₂V₂
V₁ = 2M₂V₂/M₁
V₁ = 2 * 0.112 * 0.155 / 0.2
V₁ = 0.1736 L
The volume required is 173.6 mL
Answer:
A high pH value indicates a high concentration of OH- ion
Explanation:
The higher the OH- ion concentration high will be the pH.In simple words if the concentration of OH- ions are increased then the pH of the solution will also increase which means the solution will turns towards basic with increasing its OH- ion concentration.
Let us assume that the OH- concentration of a solution is 10-9 so the pOH of that solution will be 9 and the pH will be 5.
Now the concentration of OH-ion of that solution is increased from 10-9 to 10-8 now the pOH of that solution is 8 and the pH is 6.
Sunlight is collected from a renewable resource, which is naturally replenished one a human timescale
<u>Answer</u>:
A solid will melt at the temperature at which the kinetic energy breaks the
inter-molecular attractions.
<u>Explanation</u>:
The melting point is the state at which "a substance changes its temperature from a solid to liquid". At the melting point temperature, there is an equilibrium between the both the solid and the liquid phase. When the solid particle is heated by increasing the temperature the particle in the solid vibrate quickly and it absorbs kinetic energy.
It leads to the breaking of the organisation of particle in between the solid and that leads to the melting of solid. Thus, at the melting point, the kinetic energy breaks the inter-molecular attractions.