In both cases less energy is required
But comparetively Mg require more energy than K
Let's see the electron configuration of Both
- [Mg]=1s²2s²2p⁶3s²=[Ne]3s²
- [K]=1s²2s²2p⁶3s²3p⁶4s¹=[Ar]4s¹
K has only one valence electron so very less ionization enthalpy so less energy required
Mg has 2 so more IE hence more energy required
Answer:
μ = 0.692
Explanation:
In order to solve this problem, we must make a free body diagram and include the respective forces acting on the body. Similarly, deduce the respective equations according to the conditions of the problem and the directions of the forces.
Attached is an image with the respective forces:
A summation of forces on the Y-axis is performed equal to zero, in order to determine the normal force N. this summation is equal to zero since there is no movement on the Y-axis.
Since the body moves at a constant speed, there is no acceleration so the sum of forces on the X-axis must be equal to zero.
The frictional force is defined as the product of the coefficient of friction by the normal force. In this way, we can calculate the coefficient of friction.
The process of solving this problem can be seen in the attached image.
Answer:
The new resistance comes out to be = 4 times of original resistance .
For you to answer a question on graphs, you have to first, identify the variables and coefficients given in the problem. Then, assess the Problem what is required given the <span>variables and coefficients. Lastly, develop a solution that would answer the required variables in the problem.</span>
The work done is positive and is equal to 20000 J
<h3>What is work done?</h3>
Work done is defined as the product of force and the distance moved by the force.
Mathematically:
- Work done = force * distance
The work done by the force = 20 * 1000 = 20000J
The work done is positive and is equal to 20000 J
Learn more about work done at: brainly.com/question/25923373
#SPJ1