The sample has a new pressure of 274kPa. If at 105 kPa and 275K, a 220 mL sample of helium gas is contained in a cylinder with a moving piston. The sample is pushed till it has a 95.0 mL volume and 310K .
The macroscopic characteristics of ideal gases are related by the ideal gas law (PV = nRT). A gas is considered to be perfect if its particles (a) do not interact with one another and (b) occupy no space (have no volume). Where P= pressure V= volume and T = temperature.
From ideal gas equation
P₁V₁/T₁ =P₂V₂/T₂
105×220÷275 = P₂ ×95÷310
P₂= (105×220×310)÷(275×95)
P2= 7161000/26125
P2 = 274.105 kPa
Hence, the new pressure of helium gas is 274kPa
To know more about Ideas gas equation
brainly.com/question/28837405
#SPJ1
Answer:
liquid has more attraction between molecules. It takes energy to break these forces to change the liquid to a gas.
Explanation:
because liquid has more attraction
The production of new skin cells is example of regeneration.
Regeneration is process of replacing or restoring not just skin cells, but also other cells in the human organism.
Skin regeneration is replacement of damaged tissue with new tissue.
There are two ways of skin regeneration:
1) reconstruction is a process of rebuilding of damaged skin cells
2) restoration is process of replacing broken cell skins
Epidermal stem cells are those who produces new daughter cell skins.
Epidermal stem cells are in the lowest layer of the skin.
More about skin: brainly.com/question/306377
#SPJ4
Answer:
1.65 L
Explanation:
The equation for the reaction is given as:
A + B ⇄ C
where;
numbers of moles = 0.386 mol C (g)
Volume = 7.29 L
Molar concentration of C =
= 0.053 M
A + B ⇄ C
Initial 0 0 0.530
Change +x +x - x
Equilibrium x x (0.0530 - x)
where
K is given as ; 78.2 atm-1.
So, we have:
Using quadratic formula;
where; a = 78.2 ; b = 1 ; c= - 0.0530
= or
= or
= 0.0204 or -0.0332
Going by the positive value; we have:
x = 0.0204
[A] = 0.0204
[B] = 0.0204
[C] = 0.0530 - x
= 0.0530 - 0.0204
= 0.0326
Total number of moles at equilibrium = 0.0204 + 0.0204 + 0.0326
= 0.0734
Finally, we can calculate the volume of the cylinder at equilibrium using the ideal gas; PV =nRT
if we make V the subject of the formula; we have:
where;
P (pressure) = 1 atm
n (number of moles) = 0.0734 mole
R (rate constant) = 0.0821 L-atm/mol-K
T = 273.15 K (fixed constant temperature )
V (volume) = ???
V = 1.64604
V ≅ 1.65 L
Combination
Hope this helps :)