<u>Analysing the Question:</u>
We know that equilibrium is the state of a body when it has equal and opposite forces being applied on it
In this case, a net downward force of 496N is being applied and a net upward force of (106 + 106 + 142 + x) N
<u>Finding the missing force:</u>
Since we have to achieve equilibrium, the net upward forces have to be equal to the net downward forces
So, (106 + 106 + 142 + x) = 496
354 + x = 496
x = 496 - 354
x = 142 N
Therefore, the missing force is 142 N
The acceleration and velocity of the plane is 78.57 m/s² and 157.14 m/s respectively
To calculate the acceleration of the plane, we use the formula below.
<h3>Formula:</h3>
- a = F/m..................... Equation 1
Where:
- a = Acceleration of the plane
- F = Force applied to the plane
- m = mass of the plane.
From the question,
Given:
Substitute these values into equation 1
- a = 550000/7000
- a = 78.57 m/s²
To calculate the velocity, we use the formula below.
- v = u+at............. Equation 2
Where:
- v = Final velocity
- u = initial velocity
- a = acceleration
- t = time.
From the question,
Given:
- u = 0 m/s
- a = 78.57 m/s
- t = 2.0 seconds
Substitute these values into equation 2
Hence, The acceleration and velocity of the plane is 78.57 m/s² and 157.14 m/s respectively.
Learn more about acceleration here: brainly.com/question/460763
The trachea is a tube that carries air inside the lungs.
We can find the force by using the following formula;
N = ma + mg
Fa = ma = 76 x 1.2 = 91.2
Fg = mg = 76 x 9.8 = 744.8
N = 91.2 + 744.8 = 836
So, the force is 836 N.
If the powerboat is operating at night, the light that must be shown is: <span>A white masthead light
Since dark colors dominated the surrounding during the night time, a white masthead light will provide the exact contrast for the color in the surrounding, which makes it easily identified from far away.</span>