C I think lol but I have to keep typing
Answer:

Explanation:
We are given that
Diameter of wire=d=4.12 mm
Radius of wire=r

Current=I=8 A
Drift velocity=
We have to find the density of free electrons in the metal
We know that
Density of electron=
Using the formula
Density of free electrons=
By using Area of wire=

Density of free electrons=
Before solving this, you must know the definition of these units of measurement. Watt is a measurement of power which is the amount of energy per unit time in seconds. Energy, on the other hand, is expressed through the SI unit Joules. Thus, power is the amount of energy in Joules per second.
From here, you can use the dimensional analysis technique. Also, you should know that 1 kilowatt is equal to 1000 watts, and 24 hours is equal to 86,400 seconds. Then,
100 = Energy/86,400
Energy = 8,640,000 Joules
Answer:
Explanation:
Given
Wavelength of radiation 
We know Energy of wave with wavelength
is given by

where h=Planck's constant
c=velocity of light
=wavelength of wave

Hence the energy of the wave with wavelength 784 m is
Answer:
2697.75N/m
Explanation:
Step one
This problem bothers on energy stored in a spring.
Step two
Given data
Compression x= 2cm
To meter = 2/100= 0.02m
Mass m= 0.01kg
Height h= 5.5m
K=?
Let us assume g= 9.81m/s²
Step three
According to the principle of conservation of energy
We know that the the energy stored in a spring is
E= 1/2kx²
1/2kx²= mgh
Making k subject of formula we have
kx²= 2mgh
k= 2mgh/x²
k= (2*0.01*9.81*5.5)/0.02²
k= 1.0791/0.0004
k= 2697.75N/m
Hence the spring constant k is 2697.75N/m