since the graph has direct variation as data in x axis increases y also increases.
so we need to find how many miles travelled per galloon .
we distance travelled per gallon =total distance travelled/galoons of fuel used.

for part b) slope=rise/run



slope of the graph is 2
<span>3x^2y^2 − 2xy^2 − 8y^2 =
y^2 (3x^2 - 2x - 8) =
factoring with leading coefficient:
for ax2+bx+c find two numbers n,m, that m*n = a*c and m+n = b
</span><span><span>
3x^2 - 2x - 8
a=3, b=-2, c=-8
</span>a*c = 3*(-8) = -24
-24=(-6)*4 and -6+4=-2, so m=-6 and n=4
replace bx with mx + nx and factor by grouping
</span><span>
3x^2 - 2x - 8 = </span>3x^2 -6x + 4x -8 = 3x(x-2) + 4(x-2) = (3x+4)(x-2)
answer:
<span>3x^2y^2 − 2xy^2 − 8y^2 = y^2(3x+4)(x-2)</span>
Your going to have to use the distance formula for these questions which is the square root of (x sub 2 - x sub 1) + (y sub 2 - y sub 1). For number 1 your coordinates are (-5,5) and (1,-2). Substituting these values into the formula your answer for number 1 is 9.2.
To factor quadratic equations of the form ax^2+bx+c=y, you must find two values, j and k, which satisfy two conditions.
jk=ac and j+k=b
The you replace the single linear term bx with jx and kx. Finally then you factor the first pair of terms and the second pair of terms. In this problem...
2k^2-5k-18=0
2k^2+4k-9k-18=0
2k(k+2)-9(k+2)=0
(2k-9)(k+2)=0
so k=-2 and 9/2
k=(-2, 4.5)
Answer:
x=5
Step-by-step explanation:
move the constant to the right
calculate
devide both sides
simplify the equation
seperate the solution
(x=5)