Options found from another source are:
a. oxygen. b. glucose. c. energy stored as ATP. d. carbon dioxide and water
Answer:
c energy stored as ATP
Explanation:
Cellular respiration converts glucose into energy in the form of ATP (c). The answer cannot be oxygen (a), because this is required for this process as a final electron acceptor. In terms of photosynthesis, oxygen is released as a by-product. The answer cannot be glucose (b) because that is our starting point for respiration, and what is synthesised during photosynthesis. The answer cannot be (d) as carbon dioxide and water are released by cellular respiration, and required by photosynthesis
Answer:
You need the Delta H fusion for water. Multiply that by 50 grams. Then multiply 50 g x 4.184 x 65 to get joules to raise water to 65 degrees. Add these values together to get total joules.
Explanation:
Answer:
Total energy required to raise the temperature of 425 g of tin from 298.15 K to 505.05 K and to melt the tin at 505.05 K is 45.249 kiloJoules.
Explanation:
Mass of the tin ,m= 425 g
Heat capacity of the tin ,c= 0.227 J/g K
Initial temperature of the tin ,
= 25.0 °C = 298.15 K
Final temperature of the tin,
= 231.9 °C = 505.05 K
Let the heat required to change the temperature of tin from 298.15 K to 505.05 K be Q.


Heat required to melt tin at 505.05 K be Q'
The heat of fusion of tin metal =

Total energy required to raise the temperature of 425 g of tin from 298.15 K to 505.05 K and to melt the tin at 505.05 K is:
= Q+Q' = 19.961 kJ + 25.288 kJ = 45.249 kJ
Atomic mass of N from periodic table is 14 amu so atomic mass of N₂ will be 2 * 14 = 28 amu
This means that every mole of N₂ has mass equal to 28 g
Answer:
300 servings
Explanation:
there are 1000mgs in every gram so divide that by 100 to get the servings which is 10 then multiply it by 30 , once for each gram. and you get 300.