Answer:
2352645198509.9604 m/s²
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
M = Mass of black hole = 
= 10000+100 m
= Distance between the nose and the center of the black hole = 10000 m
The difference in the gravitational field in this system is given by

The acceleration is 2352645198509.9604 m/s²
Answer:
It corresponds to 1mm-10 mm range.
Explanation:
- Electromagnetic waves (such as the millimeter-wave radiation) travel at the speed of light, which is 3*10⁸ m/s in free space.
- As in any wave, there exists a fixed relationship between speed, frequency and wavelength, as follows:

- Replacing v= c=3*10⁸ m/s, and the extreme values of f (which are givens), in (1) and solving for λ, we can get the free-space wavelengths that correspond to the 30-300 GHz range, as follows:


Answer:

Explanation:
P = Pressure difference = 1.15 kPa
r = Radius = 
= Viscosity of liquid = 
l = Length of artery = 
From Poiseuille's equation we have

The flow rate of blood is 
Answer:
Reducing Discrimination by Changing Social Norms
Reducing Prejudice through Intergroup Contact
Explanation:
Answer:
Wavelength,
Explanation:
The energy of the electron in a hydrogen atom can be calculated from the Bohr formula as :
.............(1)
Where
R is the Rydberg constant
n is the number of orbit
We need to find the wavelength of the line in the absorption line spectrum of hydrogen caused by the transition of the electron from an orbital with to an orbital with n₁ = 2 to an orbital with n₂ = 3.
Equation (1) can be re framed as :



or

So, the the wavelength of the line in the absorption line spectrum is 657 nm. Hence, this is the required solution.