Answer:
All the observers are correct.
Explanation:
This is simply a problem of reference frames from which the motion of the book is being viewed by the various observers.
From their various reference frames, they are all correct.
Observer A must be in the inertial reference frame.
<em>Observers who can explain the behavior of the book and the car by using the relationship between the sum of the forces and changing velocity are said to be observers in inertial reference frames.</em>
This is clearly shown by what observer A noticed. There was a relative motion between the book and the car as she pointed out, making her to be in an inertial reference frame.
<em>Similarly, observers in inertial reference frames can also explain the changes in velocity of objects by considering the forces exerted on them by other objects.</em>
This is shown by observer B as he is able to notice how the force of the car affects the velocity of the book.
Observer C is actually in a non-inertial reference frame, as newtons law of force motion relationship are no longer observed. This occurs in the non inertial reference frame.
Answer:
7560 Joules
Explanation:
= Mass of first car = 
= Mass of second car = 
= Initial Velocity of first car = 0.3 m/s
= Initial Velocity of second car = -0.12 m/s
v = Velocity of combined mass
As linear momentum of the system is conserved

Energy lost is

The Energy lost in the collision is 7560 Joules
Answer: Contact the National Aeronautics and Space Association
Explanation:
The National Aeronautics and Space Association is an independent organization in US which aims to enable a safe, secure, efficient space journey and launch of new satellites, spacecraft beyond the earth's orbit. It can give better information for the space travel already conducted by the astronauts. Thus will help in writing the report as it is the best place to find the information.
Answer:
a. 45 N. / b. 0.08 m/s^2. / c. 102 N
F = ma
F = 15(3)
F = 45 newtons
F/m = a
20/250 = a
0.08 m/s^2 = a
R = ma
R =1.5(68)
102 N
My best guess would be sun because it is bright but is surrounded by shadows on all sides.