Answer:
1.68 × 10²³ Molecules
Explanation:
As we know that 1 mole of any substance contains exactly 6.022 × 10²³ particles which is also called as Avogadro's Number. So in order to calculate the number of particles (molecules) contained by 0.280 moles of Br₂, we will use following relation,
Moles = Number of Molecules ÷ 6.022 × 10²³ Molecules.mol⁻¹
Solving for Number of Molecules,
Number of Molecules = Moles × 6.022 × 10²³ Molecules.mol⁻¹
Putting values,
Number of Molecules = 0.280 mol × 6.022 × 10²³ Molecules.mol⁻¹
Number of Molecules = 1.68 × 10²³ Molecules
Hence,
There are 1.68 × 10²³ Molecules present in 0.280 moles of Br₂.
<span>A solution is somthing desolved in somthing else. By desolved i mean it needs to have some particals ionized a solid you place in water that dissosiates (ions split apart from each other) makes a solution a good solution you can make in your kitchen is a salt-water solution, Put some regular table salt in a glass and stir it and you will notice the salt "disapears" what happens is the sodium ions and the chloride Ions seperate and 'hide' between water molocules.
In basic terms only some substances can make a solutions others are refered to as insoluble as they can't be seperated in water or another solvent. In actuality however all ionic compounds (compounds that are composed of ions) are at least somewhat soluble, but don't dissociate well at all in some solvents.
Hope that helps</span>
The function is determined by shape. The protein is determined by its primary structure which is the sequence of amino acids.
Amino acid sequence is determined by nucleotides in the gene (DNA)
Answer:
The heat at constant pressure is -3,275.7413 kJ
Explanation:
The combustion equation is 2C₆H₆ (l) + 15O₂ (g) → 12CO₂ (g) + 6H₂O (l)
= (12 - 15)/2 = -3/2
We have;

Where R and T are constant, and ΔU is given we can write the relationship as follows;

Where;
H = The heat at constant pressure
U = The heat at constant volume = -3,272 kJ
= The change in the number of gas molecules per mole
R = The universal gas constant = 8.314 J/(mol·K)
T = The temperature = 300 K
Therefore, we get;
H = -3,272 kJ + (-3/2) mol ×8.314 J/(mol·K) ×300 K) × 1 kJ/(1000 J) = -3,275.7413 kJ
The heat at constant pressure, H = -3,275.7413 kJ.
I have heard they can use hair is stocking or nets to absorb the oil out of the water