Answer:
4m/s
Explanation:
We know that power supplied by the motor should be equal to the rate at which energy is increased of the mass that is to be hoisted
Mathematically
\
We also know that Power = force x velocity ..................(i)
The force supplied by the motor should be equal to the weight (mg) of the block since we lift the against a force equal to weight of load
=> power = mg x Velocity........(ii)
While hoisting the load at at constant speed only the potential energy of the mass increases
Thus Potential energy = Mass x g x H...................(iii)
where
g = accleration due to gravity (9.81m/s2)
H = Height to which the load is hoisted
Equating equations (ii) and (iii) we get
m x g x v = 
thus we get v = H/t
Applying values we get
v = 6/1.5 = 4m/s
Answer:
Vc2= V(l+e) ^2/4
Vg2= V(l-e^2)/4
Explanation:
Conservation momentum, when ball A strikes Ball B
Where,
M= Mass
V= Velocity
Ma(VA)1+ Mg(Vg)2= Ma(Va)2+ Ma(Vg)2
MV + 0= MVg2
Coefficient of restitution =
e= (Vg)2- (Va)2/(Va)1- (Vg)1
e= (Vg)2- (Va)2/ V-0
Solving equation 1 and 2 yield
(Va)2= V(l-e) /2
(Vg)2= V(l+e)/2
Conservative momentum when ball b strikes c
Mg(Vg)2+Mc(Vc)1 = Mg(Vg)3+Mc(Vc)2
=> M[V(l+e) /2] + 0 = M(Vg)3 + M(Vc) 2
Coefficient of Restitution,
e= (Vc)2 - (Vg)2/(Vg)2- (Vc)1
=> e= (Vc)2 - (Vg)2/V(l+e) /2
Solving equation 3 and 4,
Vc2= V(l+e) ^2/4
Vg2= V(l-e^2)/4
Answer: yes
Explanation: People post bad things that i think should get taken down i was on an app the other day and people were posting bad things
Answer:
true
Explanation:
if it is not true it is false