The properties of the wave don't determine its speed. The properties of the medium do. You can FIND the speed by measuring the wave's frequency and wavelength.
Answer:
50m
Explanation:
Given parameters:
Initial velocity = 20m/s
Acceleration = 4m/s²
Time = 10s
Unknown:
Distance traveled by the rocket = ?
Solution:
To solve this problem use the expression below;
v² = u² + 2as
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance
final velocity = 0
Insert the parameters and solve;
0² = 20² + 2 x 4 x s
-400 = 8s
s = 50m
Disregard the negative sign because distance cannot be negative.
This problem is a piece o' cake, IF you know the formulas for both kinetic energy and momentum. So here they are:
Kinetic energy = (1/2) · (mass) · (speed²)
Momentum = (mass) · (speed)
So, now ... We know that
==> mass = 15 kg, and
==> kinetic energy = 30 Joules
Take those pieces of info and pluggum into the formula for kinetic energy:
Kinetic energy = (1/2) · (mass) · (speed²)
30 Joules = (1/2) · (15 kg) · (speed²)
60 Joules = (15 kg) · (speed²)
4 m²/s² = speed²
Speed = 2 m/s
THAT's all you need ! Now you can find momentum:
Momentum = (mass) · (speed)
Momentum = (15 kg) · (2 m/s)
<em>Momentum = 30 kg·m/s</em>
<em>(Notice that in this problem, although their units are different, the magnitude of the KE is equal to the magnitude of the momentum. When I saw this, I wondered whether that's always true. So I did a little more work, and I found out that it isn't ... it's a coincidence that's true for this problem and some others, but it's usually not true.)</em>
Human lack chlorophyll, which is the function that collects energy from the Sun to conduct photosynthesis.