Answer:
A = 1,13x10¹⁰
Ea = 16,7 kJ/mol
Explanation:
Using Arrhenius law:
ln k = -Ea/R × 1/T + ln(A)
You can graph ln rate constant in x vs 1/T in y to obtain slope: -Ea/R and intercept is ln(A).
Using the values you will obtain:
y = -2006,9 x +23,147
As R = 8,314472x10⁻³ kJ/molK:
-Ea/8,314472x10⁻³ kJ/molK = -2006,9 K⁻¹
<em>Ea = 16,7 kJ/mol</em>
Pre-exponential factor is:
ln A = 23,147
A = e^23,147
<em>A = 1,13x10¹⁰</em>
<em></em>
I hope it helps!
Aluminum has three oxidation states. The most common one is +3. The other two are +1 and +2. One +3 oxidation state for Aluminum can be found in the compound aluminum oxide, Al2O3.
I think it is e sorry if I’m wrong
Answer: Option (c) is the correct answer.
Explanation:
It is known that when Gibb's free energy, that is,
has a negative value then the reaction will be spontaneous and the formation of products is favored more rapidly.
Activation energy is defined as the minimum amount of energy required to initiate a chemical reaction.
So, when reactants of a chemical reaction are unable to reach towards its activation energy then a catalyst is added to lower the activation energy barrier so the reaction can take place rapidly.
Since, the given reaction has low activation energy. Therefore, there is no need to add a catalyst.
And, when value of
is positive then the reaction is spontaneous in nature and formation of products is less favored.
Thus, we can conclude that for the given situation positive delta G is the reason that a reaction might form products very slowly, or not at all.