The precision (relative error) of the centripetal force is 1%.
<h3>Relative error</h3>
This is the error in measurement of a variable obtained in comparison with other variables.
F = mv²/r
where;
- F is centripetal force
- m is mass
- v is velocity
- r is radius
F/m = v²/r
F/m = (0.01v)²/(0.01r)
F/m = 0.01v²/r
F/m = 1%(v²/r)
Thus, the precision (relative error) of the centripetal force is 1%.
Learn more about relative error here: brainly.com/question/13370015
Answer:C) Both have rocky composition
We know, Potential Energy = m * g * h
Here, mass & gravity would be same, but their height will change so it will be:
ΔU = U₂ - U₁
ΔU = mgh₂ - mgh₁
ΔU = mg (h₂ - h₁)
Hope this helps!
Answer:
9.82 ×
Hz
Explanation:
De Broglie equation is used to determine the wavelength of a particle (e.g electron) in motion. It is given as:
λ = 
where: λ is the required wavelength of the moving electron, h is the Planck's constant, m is the mass of the particle, v is its speed.
Given that: h = 6.63 ×
Js, m = 2.50 kg, v = 2.70 m/s, the wavelength, λ, can be determined as follows;
λ = 
= 
= 
= 9.8222 × 
The wavelength of the object is 9.82 ×
Hz.
Answer:
Propels in the opposite direction
Explanation: