Complete Question
A certain refrigerator, operating between temperatures of -8.00°C and +23.2°C, can be approximated as a Carnot refrigerator.
What is the refrigerator's coefficient of performance? COP
(b) What If? What would be the coefficient of performance if the refrigerator (operating between the same temperatures) was instead used as a heat pump? COP
Answer:
a

b
Explanation:
From the question we are told that
The lower operation temperature of refrigerator is
The upper operation temperature of the refrigerator is 
Generally the refrigerators coefficient of performance is mathematically represented as

=> 
=> 
Generally if a refrigerator (operating between the same temperatures) was instead used as a heat pump , the coefficient of performance is mathematically represented as
=>
=>
Answer:
This depends on the writers
if they want they can make spiderman deny the laws of nature
Answer:
V = V_0 - (lamda)/(2pi(epsilon_0))*ln(R/r)
Explanation:
Attached is the full solution
The answer is 21m because the motion is in one dimension with constant acceleration.
The initial velocity is 0, because it started from rest, the acceleration <span>ax</span> is <span>4.7<span>m<span>s2</span></span></span>, and the time t is <span>3.0s</span>
Plugging in our known values, we have
<span>Δx=<span>(0)</span><span>(3.0s)</span>+<span>12</span><span>(4.7<span>m<span>s2</span></span>)</span><span><span>(3.0s)</span>2</span>=<span>21<span>m</span></span></span>