1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dmitriy555 [2]
3 years ago
12

A small particle starts from rest from the origin of an xy-coordinate system and travels in the xy-plane. Its acceleration in th

e x-direction is 2m/s^2, and its acceleration in the y-direction is 1m/s^2. What is the x-coordinate of the particle when the y-coordinate is 12m?
Physics
2 answers:
Oduvanchick [21]3 years ago
8 0
<h2>Answer:</h2>

24m

<h2>Explanation:</h2>

Consider one of the equations of motion as follows;

s = ut + \frac{1}{2}at²            ----------------------------(i)

Where;

s = vertical/horizontal displacement of the body in motion

u = initial vertical/horizontal displacement of the body

t = time taken for the displacement

a = vertical/horizontal acceleration of the body.

Now, since the particle being considered moves in an xy-coordinate system, then equation (i) above can be resolved into the x (horizontal) and y (vertical) components as follows;

<u>Horizontal (x-coordinate) component</u>

s_{x} = u_{x} t + \frac{1}{2} a_{x}t²     ------------------(ii)

Where;

s_{x} = horizontal displacement (x-coordinate) of the particle in motion

u_{x} = initial horizontal displacement of the particle

t = time taken for the displacement

a_{x} = horizontal (x-direction) acceleration of the body.

<u>Vertical (y-coordinate) component</u>

s_{y} = u_{y} t + \frac{1}{2} a_{y}t²      -------------------(iii)

Where;

s_{y} = vertical displacement (y-coordinate) of the particle in motion

u_{y} = initial vertical displacement of the particle

t = time taken for the displacement

a_{y} = vertical (y-direction) acceleration of the body.

(A) Now, using equation (iii), from the question;

u_{y} = 0              [since the particle starts from rest, initial velocity is zero]

a_{y} = 1m/s²        [acceleration in the y-direction]

s_{y} = 12m           [y-coordinate value]

<em>Substitute these values into equation (iii) as follows;</em>

12 = 0 t +  \frac{1}{2} (1) t²

12 =   \frac{1}{2} t²          [Multiply through by 2]

24 = t²              [Solve for t]

t = \sqrt{24} seconds

(B) Also, using equation (ii), from the question;

u_{x} = 0              [since the particle starts from rest, initial velocity is zero]

a_{x} = 2m/s²       [acceleration in the x-direction]

s_{x} = ?               [x-coordinate value]

<em>Substitute these values into equation (ii) as follows;</em>

s_{x} = 0 t +  \frac{1}{2} (2) t²

s_{x} =  t²             -------------------(iv)

But t = \sqrt{24} seconds as calculated above, substitute this value into equation (iv)

s_{x} = (\sqrt{24})²              [Solve for s_{x}]

s_{x} = 24

Therefore, the x-coordinate of the particle when the y-coordinate is 12m is 24m

Gennadij [26K]3 years ago
4 0

Answer:

When the y-coordinate is 12m, the x-coordinate of the particle is 24 m

Explanation:

Given;

y - component of acceleration = 1 m/s²

X - component of acceleration = 2 m/s²

distance traveled in y - direction, Dy = 12 m

To determine the distance traveled in X- direction, we obtain the duration of the displacement in y- direction.

Applying equation of motion;

Dy = ¹/₂ x at²

t = \sqrt{\frac{2y}{a}} = \sqrt{\frac{2*12}{1}} = 4.9 s

For distance traveled in x -direction;

Dx = ¹/₂ x at²

Dx = ¹/₂ x 2 x (4.9)² = 24.01 m ≅ 24m

Therefore, when the y-coordinate is 12m, the x-coordinate of the particle is 24 m

You might be interested in
An emf is induced in response to a change in magnetic field inside a loop of wire. Which of the following changes would increase
goldenfox [79]

Answer:

changing the magnetic field more rapidly

Explanation:

According to Faraday's law, whenever there is a change in the magnetic lines of force, it leads the production of induced emf. The magnitude of induced emf is proportional to to the rate of change of flux.

Hence if the magnetic field inside a loop of wire is changed rapidly, the magnitude of induced emf increases in accordance with Faraday's law of electromagnetic induction stated above when the magnetic field is changed more rapidly, hence the answer.

8 0
3 years ago
A 3.0-kg block moves up a 40o incline with constant speed under the action of a 26-N force acting up and parallel to the incline
CaHeK987 [17]

Answer:

it is very hard question for me sorry i cant solve it

3 0
3 years ago
An archer tests various arrowheads by shooting arrows at a pumpkin that is suspended from a tree branch by a rope, as shown to t
erik [133]

Answer:

Bounce 1 ,  pass 3,   emb2

Explanation:

(By the way I am also doing that question on College board physics page) For the Bounce arrow, since it bumps into the object and goes back, it means now it has a negative momentum, which means a larger momentum is given to the object. P=mv, so the velocity is larger for the object, and larger velocity means a larger kinetic energy which would result in a larger change in the potential energy. Since K=0.5mv^2=U=mgh, a larger potential energy would have a larger change in height which means it has a larger angle θ with the vertical line. Comparing with the "pass arrow" and the "Embedded arrow", the embedded arrow gives the object a larger momentum, Pi=Pf (mv=(M+m)V), it gives all its original momentum to the two objects right now. (Arrow and the pumpkin), it would have a larger velocity. However for the pass arrow, it only gives partial of its original momentum and keeps some of them for the arrow to move, which means the pumpkin has less momentum, means less velocity, and less kinetic energy transferred into the potential energy, and means less change in height, less θangle.  So it is  Bounce1, pass3, emb2.  

6 0
3 years ago
How much power should a braked 1.5t car have to be braked to reduce its speed from 30m / s to 10m / s in 5s?​
grandymaker [24]

Answer:

-120000 W

Explanation:

Power = change in energy / time

P = ΔE / t

P = (½ mv₂² − ½ mv₁²) / t

P = m (v₂² − v₁²) / (2t)

Given m = 1.5 t = 1500 kg, v₂ = 10 m/s, v₁ = 30 m/s, and t = 5 s:

P = (1500 kg) ((10 m/s)² − (30 m/s)²) / (2 × 5 s)

P = -120000 W

7 0
3 years ago
Help please!
olchik [2.2K]

Answer:

Definitely Spinning permanent magnets within an array of fixed permanent magnets

Explanation:

Any relative motion between magnets (be they permanent or electromagnetic) and a coil of wire will induce an electric current in the coil.

What will not induce an electric current is the relative motion between the two coils of wire (because there is no change in magnetic field), or the relative motion between two magnets (there are no coils of wire to induce the current into).

<em>Therefore, spinning permanent magnets within an array of fixed permanent magnets does not induce an electric current.</em>

5 0
2 years ago
Read 2 more answers
Other questions:
  • What is the closest distance the electrodes used in an NCV test can be placed on a nerve in order to measure the voltage change
    15·1 answer
  • A thin spherical shell of radius 7.6 cm carries a uniform surface charge density of 6.7 times 10-9 C/m2. The magnitude of the el
    9·1 answer
  • A gauge is reading the pressure at the bottom of a river, at a depth of 6 m. Would the reading be greater or smaller than the re
    15·1 answer
  • Two children hang by their hands from the same tree branch. the branch is straight, and grows out from the tree trunk at an angl
    7·1 answer
  • (WILL MARK BRAINLIEST AND 22pts) As the earth travels around the sun, the sun is always at one focus of an ellipse. What's at th
    12·2 answers
  • Help wanted on this question.
    9·2 answers
  • Which kinds of objects emit light? A. objects that shine B. hot objects C. distant objects D. colored objects E. all objects
    15·2 answers
  • A sound wave has a speed of 345 m/s and a wavelength of 500 meters. Is it infrasonic, sonic, or ultrasonic
    15·1 answer
  • Which organelle in the plant cell would mainly help the cell get rid of water and how do you know
    8·1 answer
  • Find the relationship between 'g' and 'G'​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!