Answer:
<em>1. W = 50 ft</em>
<em>2. L = 110 m</em>
<em>3. L = 61 m</em>
Step-by-step explanation:
<u>Area of a Rectangle</u>
Given a rectangle of width W and length L, its area is calculated by the formula:
A = W.L
We are given three rectangle-shaped figures and are required to find different measures as explained below.
1. Length L=94 ft, Area = 4,700 square ft
We'll find the width by solving for W:
![\displaystyle W = \frac{A}{L}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20W%20%3D%20%5Cfrac%7BA%7D%7BL%7D)
![\displaystyle W = \frac{4,700}{94}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20W%20%3D%20%5Cfrac%7B4%2C700%7D%7B94%7D)
W = 50 ft
2. A=8,250 square m, W=75 m
We'll find the length by solving for L:
![\displaystyle L = \frac{A}{W}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20L%20%3D%20%5Cfrac%7BA%7D%7BW%7D)
![\displaystyle L = \frac{8,250}{75}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20L%20%3D%20%5Cfrac%7B8%2C250%7D%7B75%7D)
L = 110 m
3. A=1,586 square m, W=26 m
We'll find the length by solving for L:
![\displaystyle L = \frac{A}{W}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20L%20%3D%20%5Cfrac%7BA%7D%7BW%7D)
![\displaystyle L = \frac{1,586}{26}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20L%20%3D%20%5Cfrac%7B1%2C586%7D%7B26%7D)
L = 61 m