Answer:
The potential energy increases and the kinetic energy decreases
Answer:
about 14.7°
Explanation:
The formula for the angle of the first minimum is ...
sin(θ) = λ/a
where θ is the angle relative to the door centerline, λ is the wavelength of the sound, and "a" is the width of the door.
The wavelength of the sound is the speed of sound divided by the frequency:
λ = (340 m/s)/(1300 Hz) ≈ 0.261538 m
Then the angle of interest is ...
θ = arcsin(0.261538/1.03) ≈ 14.7°
At an angle of about 14.7°, someone outside the room will hear no sound.
Answer:
2874.33 m/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²

Now H-h = 0.588 - 0.002 = 0.586 m
The final velocity will be the initial velocity

Acceleration of the frog is 2874.33 m/s²
The highest point of a wave is called the crest. Among the choices, the correct answer is C. The height of the wave can be determined using the crest and the trough. The trough is the lowest point of a wave. The wavelength is the distance between two crests of a wave.
Radar waves are the waves with the lowest energy.