The answer would be slowly
Coulomb's law:
Force = (<span>8.99×10⁹ N m² / C²<span>) · (charge₁) · (charge₂) / distance²
= (</span></span><span>8.99×10⁹ N m² / C²<span>) (1 x 10⁻⁶ C) (1 x 10⁻⁶ C) / (1.0 m)²
= (8.99×10⁹ x 1×10⁻¹² / 1.0) N
= 8.99×10⁻³ N
= 0.00899 N repelling.
Notice that there's a lot of information in the question that you don't need.
It's only there to distract you, confuse you, and see whether you know
what to ignore.
-- '4.0 kg masses'; don't need it.
Mass has no effect on the electric force between them.
-- 'frictionless table'; don't need it.
Friction has no effect on the force between them,
only on how they move in response to the force.
</span></span>
Answer:
There is a thing called a continental drift. It started about 200 million years ago. At first the continents were all attached, this super continent was called pangaea. Continental drift occurs because of the shift of the tectonic plates within the earth's outer shell. The heat from within the earth triggers movement to occur. This a very slow process though. It took 200 million years for the continents to get where the are now and would probably take another 200 to collide.
Answer:
a) According to Newton's law of gravitation, as the distance between the Moon and the Earth decreases, the gravitational attraction increases and vice versa
The gravitational force of the Moon on the Earth causes the Earth to be slightly bulged on the side directly facing the Moon
The gravitational force also pulls the water bodies on the Earth's surface towards the Moon in the same manner and the effect is more pronounced due to the ability of the liquid water to assume a shape based on the magnitude of the gravitational field attracting it
Therefore, the region where the Moon is closest to the Earth we have a high tide as the water level rises and the region which is perpendicular to where the Moon is located has a low tide
b) The two special types of tides are
1) The neap tide
2) The spring tide
Neap tide
Neap tide occurs when the Sun and Moon are 90° apart from each other when they are viewed by an observer from Earth
The gravitational pull of the Sun cancels (partially) the effect of the gravitational pull and tidal force of the Moon, resulting in minimum tidal range
Spring Tide
Spring tide occurs when the Earth, the Moon, and the Sun are simultaneously inline, such that the Sun reinforces the gravitational pull and tidal force of the Moon, resulting in a maximum tidal range
Explanation:
Answer:
The west component of the given vector is - 42.548 meters.
Explanation:
We need to translate the sentence into a vectoral expression in rectangular form, which is defined as:

Where:
- Horizontal component of vector distance, measured in meters.
- Vertical component of vector distance, measured in meters.
Let suppose that east and north have positive signs, then we get the following expression:
![(x, y) = (-45\cdot \cos 19^{\circ}, -45\cdot \sin 19^{\circ})\,[m]](https://tex.z-dn.net/?f=%28x%2C%20y%29%20%3D%20%28-45%5Ccdot%20%5Ccos%2019%5E%7B%5Ccirc%7D%2C%20-45%5Ccdot%20%5Csin%2019%5E%7B%5Ccirc%7D%29%5C%2C%5Bm%5D)
![(x, y) = (-42.548,-14.651)\,[m]](https://tex.z-dn.net/?f=%28x%2C%20y%29%20%3D%20%28-42.548%2C-14.651%29%5C%2C%5Bm%5D)
The west component corresponds to the first component of the ordered pair. That is to say:

The west component of the given vector is - 42.548 meters.