Answer:
The object will travel 675 m during that time.
Explanation:
A body moves with constant acceleration motion or uniformly accelerated rectilinear motion (u.a.r.m) when the path is a straight line, but the velocity is not necessarily constant because there is an acceleration.
In other words, a body performs a u.a.r.m when its path is a straight line and its acceleration is constant. This implies that the speed increases or decreases uniformly.
In this case, the position is calculated using the expression:
x = xo + vo*t + ½*a*t²
where:
- x0 is the initial position.
- v0 is the initial velocity.
- a is the acceleration.
- t is the time interval in which the motion is studied.
In this case:
- x0= 0
- v0= 0 because the object is initially stationary
- a= 6

- t= 15 s
Replacing:
x= 0 + 0*15 s + ½*6
*(15s)²
Solving:
x=½*6
*(15s)²
x=½*6
*225 s²
x= 675 m
<u><em>
The object will travel 675 m during that time.</em></u>
Answer:
A
Explanation:
Lance was never a bright young fella so he rolled down a hill and lost his left boot
Answer : 6.022• 10^23 atoms of potassium
The kinetic energy of an object of mass m and velocity v is given by

Let's call

the initial speed of the car, so that its initial kinetic energy is

where m is the mass of the car.
The problem says that the car speeds up until its velocity is twice the original one, so

and by using the new velocity we can calculate the final kinetic energy of the car

so, if the velocity of the car is doubled, the new kinetic energy is 4 times the initial kinetic energy.
C. A step-by-step process that takes time, and is essential for learning physics concepts.