Answer:
45.02 L.
Explanation:
- Firstly, we need to calculate the no. of moles of water vapor.
- n = mass / molar mass = (36.21 g) / (18.0 g/mol) = 2.01 mol.
- We can calculate the volume of knowing that 1.0 mole of a gas at STP occupies 22.4 L.
<em><u>Using cross multiplication:</u></em>
1.0 mole of CO occupies → 22.4 L.
2.01 mole of CO occupies → ??? L.
∴ The volume of water vapor in 36.21 g = (22.4 L)(2.01 mole) / (1.0 mole) = 45.02 L.
Answer:
Explanation:
<u>1) Rate law, at a given temperature:</u>
- Since all the data are obtained at the same temperature, the equilibrium constant is the same.
- Since only reactants A and B participate in the reaction, you assume that the form of the rate law is:
r = K [A]ᵃ [B]ᵇ
<u>2) Use the data from the table</u>
- Since the first and second set of data have the same concentration of the reactant A, you can use them to find the exponent b:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₂ = (1.50)ᵃ (2.50)ᵇ = 2.50 × 10⁻¹ M/s
Divide r₂ by r₁: [ 2.50 / 1.50] ᵇ = 1 ⇒ b = 0
- Use the first and second set of data to find the exponent a:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₃ = (3.00)ᵃ (1.50)ᵇ = 5.00 × 10⁻¹ M/s
Divide r₃ by r₂: [3.00 / 1.50]ᵃ = [5.00 / 2.50]
2ᵃ = 2 ⇒ a = 1
<u>3) Write the rate law</u>
This means, that the rate is independent of reactant B and is of first order respect reactant A.
<u>4) Use any set of data to find K</u>
With the first set of data
- r = K (1.50 M) = 2.50 × 10⁻¹ M/s ⇒ K = 0.250 M/s / 1.50 M = 0.167 s⁻¹
Result: the rate constant is K = 0.167 s⁻¹
Answer:
metal to non metal ratio is 97/21 = 4.62 or
82.2% metals, 17.8% non metals
Explanation:
How do the numbers of metal and non-metal elements compare? Estimate an approximate percentage difference. (learning about the periodic table if...
of 118 elements in the periodic table , 21 are non metals (even H has metallic properties when approching 0 degrees K)
this means there ar 21 nonmetals and 118-21=97 metals.
Because water is polar and oil is nonpolar, their molecules are not
attracted to each other. The molecules of a polar solvent like water are
attracted to other polar molecules, such as those of sugar. This explains
why sugar has such a high solubility in water. Ionic compounds, such
as sodium chloride, are also highly soluble in water. Because water
molecules are polar, they interact with the sodium and chloride ions.
In general, polar solvents dissolve polar solutes, and nonpolar solvents
dissolve nonpolar solutes. This concept is often expressed as “Like
dissolves like.”
So many substances dissolve in water that it is sometimes called
the universal solvent. Water is considered to be essential for life
because it can carry just about anything the body needs to take in
or needs to get rid of.