Answer:
1a. Both sides of the decay reaction have the same charge.
b. The number of nucleons on both sides are the same.
2. The binding energy of one mole of the atom is 17.172 ×
J.
Explanation:
1a. Considering the two sides of the decay reaction and with respect to the law of conservation of charge, it can be observed that both sides have the same charge. Charge can not be created or destroyed in the process.
b. The number of nucleons on both sides are equal. No nucleon is created or destroyed in the process.
2. Binding energy is the minimum energy required to separate an atom into its nucleons. From Einstein's energy equation;
E = Δm
Where E is the binding energy of the atom, Δm is the mass defect and c is the speed of light.
Given that: Δm = 1.908 g/mol and c = 3 ×
. So that:
E = 1.908 × 
= 1.908 × 9 × 
= 17.172 ×
J
The binding energy of one mole of the atom is 17.172 ×
J.
Answer:
Assuming that the atmospheric pressure is standard, the temperature will rise steadily until it reaches 100°C
Answer:
See explanation
Explanation:
From left to right, the oxides across period 3;
i) Period 3 oxides all appear white in colour. They are all crystalline solids and their melting points decrease from left to right.
ii) The volatility of period 3 oxides increases from left to right across the periodic table
iii) The metallic oxides on the right hand side adopt giant ionic structures. Silicon oxide which is in the middle of the period forms a giant covalent structure. Oxides of other elements towards the right hand side form molecular oxide structures.
iv) The acidity of oxides of period 3 increases from left to right. Metals on the left hand side form basic oxides while non-metals on the right hand side form acidic oxides. The oxide of aluminium in the middle is amphoteric.
v) The oxides of period 3 elements do not conduct electricity. However, the metallic oxides on the lefthand side conduct electricity in molten state. The non-metallic oxides on the right hand side are molecular hence they do not conduct electricity under any circumstance.
From the equation of the graph, the activation energy of the reaction is -2.2 * 10⁴ J/mol.
<h3>What is activation energy?</h3>
Activation energy is the minimum required energy that reactant molecules must possess for a reaction to proceed towards formation of products.
The activation energy is determined from the slope of ln k against 1/T(K).
Given the equation, y = -2.2 * 10⁴ x + 45.0.
Comparing with the equation of a straight line, y = mx + c
The gradient, m = -2.2 * 10⁴
Therefore, the activation energy of the reaction is -2.2 * 10⁴ J/mol.
In conclusion, reactant molecules must break the activation energy barrier in order to form products.
Learn more about activation energy at: brainly.com/question/26724488
#SPJ1
The balanced chemical equation for the Haber-Bosch process is N₂(g) + 3H₂(g) → 2NH₃(g). The Haber-Bosch process played a significant role in boosting agriculture back in the day. It paved the way for the industrial production of ammonia which is used in the manufacture of fertilizers. The process involves reacting atmospheric N₂ with H₂ using a metal catalyst under high temperature and pressure.