Answer: Below
|
|
^
Explanation:
The atomic theory is that all matter is made up of tiny units or particles called atoms. This theory describes the characteristics, structure and behavior of atoms as well as the components that make up atoms. Furthermore, the theory states that all elements are made up of identical atoms.
The atomic theory is a theory in the study of chemistry that states atoms are the building blocks of matter. Atoms contain protons, neutrons and electrons. Protons, which have a positive charge, and neutrons are found in the nucleus of the atom. Electrons, which have a negative charge, orbit the nucleus.
According to the atomic theory, all elements contain atoms. The difference is the number of protons, electrons and neutrons in that atom. For instance, hydrogen contains one proton and one electron but no neutrons. Oxygen, on the other hand contains eight protons, electrons and neutrons. The difference in protons, electrons and neutrons determines the stability and the other properties of any particular element. These elements are grouped according to their atomic masses, which depend on the number of protons and neutrons in each of the atoms. Because oxygen has more protons and neutrons than hydrogen, it has a higher atomic mass.
Answer:
1.30464 grams of glucose was present in 100.0 mL of final solution.
Explanation:

Moles of glucose = 
Volume of the solution = 100 mL = 0.1 L (1 mL = 0.001 L)
Molarity of the solution = 
A 30.0 mL sample of above glucose solution was diluted to 0.500 L:
Molarity of the solution before dilution = 
Volume of the solution taken = 
Molarity of the solution after dilution = 
Volume of the solution after dilution= 



Mass glucose are in 100.0 mL of the 0.07248 mol/L glucose solution:
Volume of solution = 100.0 mL = 0.1 L

Moles of glucose = 
Mass of 0.007248 moles of glucose :
0.007248 mol × 180 g/mol = 1.30464 grams
1.30464 grams of glucose was present in 100.0 mL of final solution.
Chadwick, Thompson, Rutherford, Bohr
Answer:
666,480 Joules or 669.48 kJ
Explanation:
We are given;
- Volume of water as 2.0L or 2000 ml
but, density of water is 1 g/ml
- Therefore, mass of water is 2000 g
- Initial temperature as 20 °C
- Final temperature as 99.7° C
Required to determine the heat change
We know that ;
Heat change = Mass × Temperature change × specific heat
In this case;
Specific heat of water is 4.2 J/g°C
Temperature change is 79.7 °C
Therefore;
Heat change = 2000 g × 79.7 °C × 4.2 J/g°C
= 669,480 Joules 0r 669.48 kJ
Thus, the heat change involved is 666,480 Joules or 669.48 kJ