Answer:
a) 50μC
b) 37.45 m/s
Explanation:
a) If the spheres are connected the charge in both spheres tends to be equal. This because is the situation of minimum energy.
Thus, you have:

Hence, each sphere has a charge of 50μC.
b) You use the fact that the total work done by the electric force is equal to the change in the kinetic energy of the sphere. Then, you use the following equations:
![\Delta W=\Delta K\\\\\int_{0.4}^\infty Fdr=\frac{1}{2}m[v^2-v_o^2]\\\\F=k\frac{Q^2}{r^2}\\\\v_o=0m/s\\\\m=0.08kg\\\\kQ^2\int_{0.4}^{\infty} \frac{dr}{r^2}=kQ^2[-\frac{1}{r}]_{0.4}^{\infty}=\frac{kQ^2}{0.4m}=\frac{(8.98*10^9Nm^2/C^2)(50*10^{-6}C)^2}{0.4m}\\\\kQ^2\int_{0.4}^{\infty} \frac{dr}{r^2}=56.125J](https://tex.z-dn.net/?f=%5CDelta%20W%3D%5CDelta%20K%5C%5C%5C%5C%5Cint_%7B0.4%7D%5E%5Cinfty%20Fdr%3D%5Cfrac%7B1%7D%7B2%7Dm%5Bv%5E2-v_o%5E2%5D%5C%5C%5C%5CF%3Dk%5Cfrac%7BQ%5E2%7D%7Br%5E2%7D%5C%5C%5C%5Cv_o%3D0m%2Fs%5C%5C%5C%5Cm%3D0.08kg%5C%5C%5C%5CkQ%5E2%5Cint_%7B0.4%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdr%7D%7Br%5E2%7D%3DkQ%5E2%5B-%5Cfrac%7B1%7D%7Br%7D%5D_%7B0.4%7D%5E%7B%5Cinfty%7D%3D%5Cfrac%7BkQ%5E2%7D%7B0.4m%7D%3D%5Cfrac%7B%288.98%2A10%5E9Nm%5E2%2FC%5E2%29%2850%2A10%5E%7B-6%7DC%29%5E2%7D%7B0.4m%7D%5C%5C%5C%5CkQ%5E2%5Cint_%7B0.4%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdr%7D%7Br%5E2%7D%3D56.125J)
where you have used the Coulomb constant = 8.98*10^9 Nm^2/C^2
Next, you equal the total work to the change in K:

hence, the speed of the spheres is 37.45 m/s
Answer:
motion
Explanation:
i had an assignment on it!
Explanation:
Given that,
The box of oranges cannot exceed a mass of 10.222 Kg if we are sending to a friend by mail.
The mass of each orange is 198 g
We know that,
1 kg = 1000 g
10.222 kg = 10.222×1000 g
Let there are n number of oranges. So,

It means she can send 52 oranges and it is maximum quantity.
Answer:
Momentum after collision will be 6000 kgm/sec
Explanation:
We have given mass of the whale = 1000
Initial velocity v = 6 m/sec
It collides with other mass of 200 kg which is at stationary
Initial momentum of the whale = 1000×6 = 6000 kgm/sec
We have to find the momentum after collision
From conservation of momentum
Initial momentum = final momentum
So final momentum = 6000 kgm/sec