Answer:
Nonpolar Covalent Bond
Explanation:
A nonpolar covalent bond is one in which the bonding electrons are evenly distributed between the two atoms.
Good Luck!
Hope this helps!
:)
The correct option is A.
An oxidation reaction is one in which a substance gives away electrons and becomes oxidized. In the equation given above, the chlorate ion undergoes oxidation reaction and gives away two chlorine ion.
Answer:
Weaker attraction between its molecules than the green substance. It's molecules now move away from each other.
Explanation:
Liquid to gas.
Answer:
Hello fellow brainlian! here is the answer that you seek:High pressure areas are usually caused by air masses being cooled, either from below (for instance, the subtropical high pressure zones that form over relatively cool ocean waters to the west of Califormia, Africa, and South America
Explanation:
Have a totally horse-some day!
With love,
-The one and only Alaska
Answer:
27 min
Explanation:
The kinetics of an enzyme-catalyzed reaction can be determined by the equation of Michaelis-Menten:
![v = \frac{vmax[S]}{Km + [S]}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7Bvmax%5BS%5D%7D%7BKm%20%2B%20%5BS%5D%7D)
Where v is the velocity in the equilibrium, vmax is the maximum velocity of the reaction (which is directed proportionally of the amount of the enzyme), Km is the equilibrium constant and [S] is the concentration of the substrate.
So, initially, the velocity of the formation of the substrate is 12μmol/9min = 1.33 μmol/min
If Km is a thousand times smaller then [S], then
v = vmax[S]/[S]
v = vmax
vmax = 1.33 μmol/min
For the new experiment, with one-third of the enzyme, the maximum velocity must be one third too, so:
vmax = 1.33/3 = 0.443 μmol/min
Km will still be much smaller then [S], so
v = vmax
v = 0.443 μmol/min
For 12 μmol formed:
0.443 = 12/t
t = 12/0.443
t = 27 min