N = 10*27 / 87 = 270/18 = 15
Answer:
X=26
Step-by-step explanation:
180-105=75
26•2=52. 52+23=75°
Answer:
x ≈ -0.90, y ≈ 2.31
x ≈ 1.40, y ≈ 9.19
Step-by-step explanation:
Easiest and fastest way to do this is to graph the systems of equations and trace where the graphs intersect:
Answer:
It is not the same
Step-by-step explanation:
Is 5/2 greater than 2/5? Is 5/2 bigger than 2/5? Is 5/2 larger than 2/5? These are all the same questions with one answer.
When comparing fractions such as 5/2 and 2/5, you could also convert the fractions (if necessary) so they have the same denominator and then compare which numerator is larger.
To get the answer, we first convert each fraction into decimal numbers. We do this by dividing the numerator by the denominator for each fraction as illustrated below: 5/2 = 2.5
2/5 = 0.4 Therefore, 5/2 is greater than 2/5 and the answer to the question "Is 5/2 greater than 2/5?" is yes.
"determine the location" or namely, is it inside the circle, outside the circle, or right ON the circle?
well, we know the center is at (1,-5) and it has a radius of 5, so the distance from the center to any point on the circle will just be 5, now if (4,-1) is less than that away, is inside, if more than that is outiside and if it's exactly 5 is right ON the circle.
well, we can check by simply getting the distance from the center to the point (4,-1).
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ \stackrel{center}{(\stackrel{x_1}{1}~,~\stackrel{y_1}{-5})}\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{-1})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d = \sqrt{[4-1]^2+[-1-(-5)]^2}\implies d=\sqrt{(4-1)^2+(-1+5)^2} \\\\\\ d = \sqrt{3^2+4^2}\implies d =\sqrt{9+16}\implies d=\sqrt{25}\implies \stackrel{\textit{right on the circle}}{d = 5}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%5Cstackrel%7Bcenter%7D%7B%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B-5%7D%29%7D%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B-1%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%20%3D%20%5Csqrt%7B%5B4-1%5D%5E2%2B%5B-1-%28-5%29%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%284-1%29%5E2%2B%28-1%2B5%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%20%3D%20%5Csqrt%7B3%5E2%2B4%5E2%7D%5Cimplies%20d%20%3D%5Csqrt%7B9%2B16%7D%5Cimplies%20d%3D%5Csqrt%7B25%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bright%20on%20the%20circle%7D%7D%7Bd%20%3D%205%7D)