The bonds that hold atoms together to form molecules are called covalent bonds. They are pretty tough and not easily made or broken apart. It takes energy to make the bonds and energy is released when the bonds are broken.
Answer:
364.4 J
Explanation:
I = Moment of inertia of the forearm = 0.550 kgm²
v = linear velocity of the ball relative to elbow joint = 17.1 m/s
r = distance from the joint = 0.470 m
w = angular velocity
Using the equation
v = r w
17.1 = (0.470) w
w = 36.4 rad/s
Rotational kinetic energy of the forearm is given as
RKE = (0.5) I w²
RKE = (0.5) (0.550) (36.4)²
RKE = 364.4 J
It forces the mercury to rise, being pushed up the tube by pressing down on the dish.
I hope I could help :)
Answer:
(a) V1 = 8990.00 V
V2 = 8960.13 V
Explanation:
Parameters given:
q =3 mC
k = 8.99 * 10⁹ Nm²/C²
x1 = 3 m
x2 = 3.01 m
Electric potential is given as:
V = kq/r
Where
k = Coulombs constant
q = charge
r = distance
Potential at x1 is:
V1 = (8.99 * 10⁹ * 0.000003)/(3)
V1 = 8990.00V
Potential at x2 is:
V2 = (8.99 * 10⁹ * 0.003)/(3.01)
V2 = 8960.13 V