A) the periodic time is given by the equation;
T= 2π√(L/g)
For the frequency will be obtained by 1/T (Hz)
T = 2 × 3.14 √ (0.66/9.81)
= 6.28 × √0.0673
= 1.6289 Seconds
Frequency = 1/T = f = 1/1.6289
thus; frequency = 0.614 Hz
b) The vertical distance, the height is given by
h= 0.66 cos 12
h = 0.65 m
Vertical fall at the lowest point = 0.66 - 0.65 = 0.01 m
Applying conservation of energy
energy lost (MgΔh) = KE gained (1/2mv²)
mgh = 1/2mv²
v² = 2gΔh = 2×9.81 × 0.01
= 0.1962
v = 0.443 m/s
c) total energy = KE + GPE = KE when GPE is equal to zero (at the lowest point possible)
Thus total energy is equal to;
E = 1/2mv²
= 1/2 × 0.310 × 0.443²
= 0.0304 J
Answer:
a little
Explanation:
First of all, it's not how you spell "tyres", it is tires.
Second of all, you already know the Mass so what you need to find out now is contact the road. You Know that your number and letter are squared so that would turn into 6m x 2.4. Then you do the math do continue on to finish it. Have a great day!! Good luck with the answer!!
Answer:
52 mm/s (approximately)
Explanation:
Given:
Initial speed of the projectile is, 
Angle of projection is, 
Time taken to land on the hill is, 
In a projectile motion, there is acceleration only in the vertical direction which is equal to acceleration due to gravity acting vertically downward. There is no acceleration in the horizontal direction.
So, the velocity in the horizontal direction always remains the same.
The horizontal component of initial velocity is given as:

Now, the velocity in the vertical direction goes on decreasing and becomes 0 at the highest point of the trajectory. So, at the highest point, only horizontal component acts.
Therefore, the projectile's velocity at the highest point of its trajectory is equal to the horizontal component of initial velocity and thus is equal to 52 mm/s.
Answer with Explanation:
We are given that
Diameter=0.030 m
Length of sprue=
=0.200 m
Metal volume flow rate,Q=0.03
Q=
because 1 minute=60 seconds
Let 1 for the top and 2 for the bottom






Pressure at the top and bottom of the sprue is atmospheric

Substitute the values






Reynolds number=


Substitute the values then we get
Reynolds number=
Reynolds number=42525
The Reynolds number is greater than 4000 .Therefore, the flow is turbulent.