Answer:

Explanation:
The force of gravity acting on the satellite is given by:

where
G is the gravitational constant
is the Earth's mass
m is the mass of the satellite
r is the distance of the satellite from the Earth's centre
Here we have
m = 700 kg

Substituting into the equation, we find:

<em>Note that the distance mentioned in the problem (2.4 x 10^6 meters) is not realistic, since it is less than the radius of the Earth (6.37 x 10^6 meters).</em>
Answer:
<em>10.90km</em>
Explanation:
Magnitude of the total displacement is expressed using the equation
d = √dx²+dy²
dx is the horizontal component of the displacement
dy is the vertical component of the displacement
dy = -6.7sin27°
dy = -6.7(0.4539)
dy = -3.042
For the horizontal component of the displacement
dx = -4.5 - 6.7cos27
dx = -4.5 -5.9697
dx = -10.4697
Get the magnitude of the bicyclist's total displacement
Recall that: d = √dx²+dy²
d = √(-3.042)²+(-10.4697)²
d = √9.2538+109.6146
d = √118.8684
<em>d = 10.90km</em>
<em>Hence the magnitude of the bicyclist's total displacement is 10.90km</em>
<em></em>
Answer:
f = 0.5 Hz
Explanation:
frequency = f
wave length = l
speed of wave = v
f = v/l → f = 3/6 = ½ = 0.5 Hz
<h2>A is the correct answer!</h2><h3></h3><h3>I'm too lazy to explain :(</h3><h3></h3><h3><em>Please let me know if I am wrong.</em></h3>
Answer:
KE = 2.03 J
Explanation:
After impact, the kinetic energy of the bullet+block will convert to potential energy
½mv² = mgh
v = √(2gh) = √(2(9.81)(0.00500) = 0.0981 m/s
conservation of momentum during the collision
0.015u + 2.50(0) = (2.50 + 0.015)(0.0981)
u = 16.4481 m/s
KE = ½mv² = ½(0.015)16.4481² = 2.0290499...
KE = 2.03 J