Answer:
Molar mass→ 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Explanation:
Let's apply the formula for freezing point depression:
ΔT = Kf . m
ΔT = 74.2°C - 73.4°C → 0.8°C
Difference between the freezing T° of pure solvent and freezing T° of solution
Kf = Cryoscopic constant → 5.5°C/m
So, if we replace in the formula
ΔT = Kf . m → ΔT / Kf = m
0.8°C / 5.5 m/°C = m → 0.0516 mol/kg
These are the moles in 1 kg of solvent so let's find out the moles in our mass of solvent which is 0.125 kg
0.0516 mol/kg . 0.125 kg = 6.45×10⁻³ moles. Now we can determine the molar mass:
Molar mass (mol/kg) → 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Answer:
798.2 grams / meter = 0.008 kilograms / centimeter
Explanation:
Answer: it would be cation, 2+
Explanation: electrons are negatively charged by 1. So if you get rid of 2 electrons it would be positive and cation is used to represent positive ions.
D. Chemical and Physical Properties
Great question, but I believe you are mixing up atomic number with mass number. Assuming you are, 12.011 amu is the average mass of a carbon atom. For carbon, it can come in three forms: carbon-12, carbon-13, carbon-14. The number following carbon is the mass number of that particular carbon "isotope". The reason the average is so close to 12 is because carbon-12 is by far the most common, so the average should be (and is) very close to 12. Therefore, 12.011 is a weighted average of all carbon molecules, and carbon-14 is a particular carbon molecule that weighs 14 amu.