Answer:
9.474 x 10^2
Explanation:
ok. first you have to get the value in the required unit so 9474mm/(10mm/cm) = 947.4 so scientific notation states that the number must be raised to any power of an integer and the value of the number being raised must be less than than 10 and more than or equal to 1
so it must have one digit in front so.. 947.4 becomes 9.474 and because you move 2 places to the left, ur power is positive 2
and proof 10^2 is 100 so multiply 9.474 by 100 and u will get 947.4 cm which is also 9474 mm
<span>Hydrogen carbon and oxygen commonly form covalent bonds.
</span>
HOPE THIS HELPS!
Yes you do cause its more explanation to
<span />
The molar concentration of the KI_3 solution is 0.251 mol/L.
<em>Step 1</em>. Write the <em>balanced chemical equation</em>
I_3^(-) + 2S_2O_3^(2-) → 3I^(-) + S_4O_6^(2-)
<em>Step 2</em>. Calculate the <em>moles of S_2O_3^(2-)</em>
Moles of S_2O_3^(2-)
= 27.9 mL S_2O_3^(2-) ×[0.270 mmol S_2O_3^(2-)/(1 mL S_2O_3^(2-)]
= 7.533 mmol S_2O_3^(2-)
<em>Step 3</em>. Calculate the <em>moles of I_3^(-)
</em>
Moles of I_3^(-) = 7.533 mmol S_2O_3^(2-)))) × [1 mmol I_3^(-)/(2 mmol S_2O_3^(2-)] = 3.766 mmol I_3^(-)
<em>Step 4</em>. Calculate the <em>molar concentration of the I_3^(-)
</em>
<em>c</em> = "moles"/"litres" = 3.766 mmol/15.0 mL = 0.251 mol/L