Answer:
271.862 N/m
Explanation:
From Hook's Law,
mgh = 1/2ke²............... Equation 1
Where
m = mass of the ball, g = acceleration due to gravity, k = spring constant, e = extension, h = height fro which the ball was dropped.
Making k the subject of the equation,
k =2mgh/k²....................... Equation 2
Note: The potential energy of the ball is equal to the elastic potential energy of the spring.
Given: m = 60.3 g = 0.0603 kg, g = 9.8 m/s², e = 4.68317 cm = 0.0468317 m, h = 53.7 cm = 0.537 m
Substitute into equation 2
k = 2(0.0603)(9.8)(0.537)/0.048317²
k = 0.6346696/0.0023345
k = 271.862 N/m
All of Dina's potential energy Ep is converted into kinetic energy Ek so Ep=Ek, where Ep=m*g*h and Ek=(1/2)*m*v². m is the mass of Dina, h is the height of ski slope, g=9.8 m/s² and v is the maximal velocity.
So we solve for v:
m*g*h=(1/2)*m*v², masses cancel out,
g*h=(1/2)*v², we multiply by 2,
2*g*h=v² and take the square root to get v
√(2*g*h)=v, we plug in the numbers and get:
v=9.9 m/s.
So Dina's maximum velocity on the bottom of the ski slope is v=9.9 m/s.
Hypothesis testing is basically testing the results of a experiment to see weather your results are valid or not.
We can solve the problem by requiring the equilibrium of the forces and the equilibrium of torques.
1) Equilibrium of forces:

where

is the weight of the person

is the weight of the scaffold
Re-arranging, we can write the equation as

(1)
2) Equilibrium of torques:

where 3 m and 2 m are the distances of the forces from the center of mass of the scaffold.
Using

and replacing T1 with (1), we find

from which we find

And then, substituting T2 into (1), we find
Answer:
Explanation:
weight on moon = 1/6* weight on earth
69.3=1/6*weight on earth
weight on earth = 69.3*6
weight on earth = 415.8 N