Im pretty sure the answer is 4 but not 100 percent
Answer:
the answer is c. their atomic masses are different clearly because an atom of gold has 79 protons and the atom can be divided multiple times. An atom of silver has an atomic number of 47. 47 electrons. Clearly different. Hope it helps :)
Explanation:
You can use the equation ΔS(surr)=q(surr)/T or ΔS(surr)=-q(rxn)/T.
the two equations are equal since we know that the energy the system (reactoin) puts out just goes into the surroundings.
(In other words q(surr)=-q(rxn))
Using the equation, <span>ΔS(surr)=-(-283kJ/298K)=0.9497kJ/K or 949.7J/K
This answer makes sense since the reaction is exothermic which means it released energy into the system which usually causes the entropy to increase.
I hope that helps.</span>
<h3><u>Answer;</u></h3>
True
<h3><u>Explanation</u>;</h3>
- The molecule NH3 contains all single bonds.
- NH3 has a three single covalent bond among its nitrogen and hydrogen atoms,because one valence electron of each of three atom of hydrogen is shared with three electron.
- There are three covalent bonds are in NH3 . Each hydrogen make a single bond with nitrogen and there is also a pair of electron which is unpaired from nitrogen.
Answer:
grams of sodium phosphate must be added to 1.4 L of this solution to completely eliminate the hard water ions
Explanation:
We will first write the balanced equation for this scenario
3 CaCl2 + 2 Na3PO4 ----> 6 NaCl + Ca3 (PO4)2
3 Mg(NO3)2 + 2 Na3PO4 -----> 6 NaNO3 + Mg3 (PO4)2
The ratio here for both calcium chloride and magnesium nitrate is 
The number of moles of each compound is equal to
Using the mole ratio of 3:2, convert each to moles of sodium phosphate.
mole of CaCl2 is equal to
Na3PO4
mole of CaCl2 is equal to
Na3PO4
Converting moles of sodium phosphate to grams of sodium phosphate we get
g/mol
grams of sodium phosphate must be added to 1.4 L of this solution to completely eliminate the hard water ions