You can boil or evaporate the water and the salt will be left behind as a solid. If you want to collect the water, you can use distillation. This works because salt has a much higher boiling point than water. One way to separate salt and water at home is to boil the salt water in a pot with a lid. So, I would say maybe oil.
Using accurate measurements, using pure chemicals and performing the reaction under the most ideal conditions is important to get a valuable percent yield.
<h3>How we calculate the percent yield?</h3>
Percent yield of any chemical reaction is define as the ratios of the actual yield to the theoretical yield of the product and multiply by the 100.
To get the high percent yield or actual yield of any reaction, we have to perform the reaction under ideal condition because if we not use the standard condition then we get the low rate of reaction. Reactants should be present in the pure form as impurity make unwanted products and reduce the productivity of main product and accurate amount of reactants also important for the spontaneous reaction.
Hence, options (a), (b) & (c) are correct.
To know more about percent yield, visit the below link:
brainly.com/question/8638404
Answer:
Alpha Particle, Beta Particles and Gamma Rays
Explanation:
Atoms are divisible contrary to the early beliefs that the smallest "indivisible" matter is an atom. When an atom loses its identity it means that they are divisible. Atoms chemically react with other kinds of atoms thus changing their activity.
They certainly are not that important to our lives, but it’s good to know :)
Answer:
A.) ![K_b = \frac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]}](https://tex.z-dn.net/?f=K_b%20%3D%20%5Cfrac%7B%5BCH_3NH_3%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BCH_3NH_2%5D%7D)
Explanation:
The general Kb expression is:
![K_b = \frac{[HA][OH^-]}{[A^-]}](https://tex.z-dn.net/?f=K_b%20%3D%20%5Cfrac%7B%5BHA%5D%5BOH%5E-%5D%7D%7B%5BA%5E-%5D%7D)
In this equation
-----> Kb = equilibrium constant
-----> [HA] = acid
-----> [A⁻] = base
Since liquids are not included in equilibrium expressions, H₂O should not be present. The products are in the numerator while the reactant are in the denominator. In this reaction, CH₃NH₂ is acting as a base and CH₃NH₃⁺ is acting as an acid.
As such, the expression is:
![K_b = \frac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]}](https://tex.z-dn.net/?f=K_b%20%3D%20%5Cfrac%7B%5BCH_3NH_3%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BCH_3NH_2%5D%7D)